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We introduce lattice models with explicit N � 2 supersymmetry. In these interacting models, the
supersymmetry generators Q� yield the Hamiltonian H � fQ�; Q�g on any graph. The degrees of
freedom can be described as either fermions with hard cores, or as quantum dimers; the Hamiltonian of
our simplest model contains a hopping term and a repulsive potential. We analyze these models using
conformal field theory, the Bethe ansatz, and cohomology. The simplest model provides a manifestly
supersymmetric lattice regulator for the supersymmetric point of the massless �1� 1�-dimensional
Thirring (Luttinger) model. Generalizations include a quantum monomer-dimer model on a two-leg
ladder.
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in at least some cases, this lattice supersymmetry extends
to a space-time super(conformal) symmetry in the field

of the Hamiltonian Eq. (1) satisfy E � 0, and the eigen-
states form either singlet or doublet representations of the
Supersymmetry is an exceptionally powerful theo-
retical tool. It can allow exact computations in field
theory and string theory, even when interactions are
strong. However, since only certain quantities can be
computed nonperturbatively, a lattice formulation of
supersymmetric field theories would be useful. Efforts
to achieve this aim have concentrated mainly on taking
a known field theory and discretizing it [1]. Since the
supersymmetry algebra involves the Poincaré algebra,
putting it on a lattice automatically breaks at least some
of the supersymmetries. The difficulty is in ensuring that
the supersymmetry is maintained in the continuum limit.

In this Letter, we approach the problem in a different
way. We introduce simple lattice models with N � 2
supersymmetry, describing interacting fermions and
quantum monomer-dimer systems. We show that the con-
tinuum limit of the simplest of these models is a well-
known �1� 1�-dimensional quantum field theory with
N � �2; 2� superconformal symmetry. We also note the
close connections with models of current interest in the
study of strongly correlated electrons, and show how
supersymmetry can be useful in studying their proper-
ties. There are two key questions we will attempt to
answer. The first is: What properties can be computed
exactly using the supersymmetry? The second is: Which
(if any) field theories describe the models in the contin-
uum limit?

Our definition of N � 2 supersymmetry is that the
Hamiltonian H is built from two nilpotent fermionic
generators denoted Q� and Q� � �Q��y [2]. It is

H � fQ�; Q�g: (1)

The fact that Q� and Q� commute with H follows from
the nilpotency �Q��2 � �Q��2 � 0. Models with N � 2
supersymmetry also have a fermion-number symmetry
generated by F with 
F;Q�� � �Q�. We shall show how,
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theory describing the continuum limit. Lattice models
with a symmetry involving fermionic generators, such
as the t-J model at J � �2t, are often called ‘‘super-
symmetric’’ in the condensed-matter literature, but do
not have a Hamiltonian of the form of Eq. (1).

The models we introduce can be defined on any lattice
(or actually, any graph) in any dimension. The simplest
model involves a single species of fermion ci, placed at
any site i of the lattice. The fermion obeys the usual
anticommutator fci; c

y
j g � �ij, and the operator F �P

i c
y
i ci counts the number of fermions. We impose the

restriction that the fermions have hard cores, meaning
that fermions are not allowed on neighboring sites. A
hard-core fermion is created by cyi P hii, where the projec-
tion operator P hii requires all sites neighboring i to be
empty:

P hii �
Y

j next to i

�1� cyj cj�: (2)

The supersymmetry operators are defined by

Q� �
X
i

cyi P hii; Q� �
X
i

ciP hii: (3)

It is easy to verify that �Q��2 � �Q��2 � 0. The
Hamiltonian is therefore

H �
X
i

X
j next to i

P hiic
y
i cjP hji �

X
i

P hii: (4)

The first term in the Hamiltonian allows fermions to hop
to neighboring sites, with the projectors maintaining the
hard-core repulsion. The second term favors having more
fermions, as long as they are more than two sites from
each other. Thus, one can view it as a repulsive potential
for fermions, in addition to the hard core.

The supersymmetry is very useful for finding the
E � 0 ground states of a theory [2]. All eigenvalues E
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supersymmetry algebra. All singlets must have E � 0,
and all states jgi with E � 0 are singlets: Q�jgi �
Q�jgi � 0. Eigenstates jsi with Q�jsi � 0 and E > 0
give rise to a doublet �jsi; Q�jsi� of eigenstates with the
same eigenvalue E. All E > 0 eigenstates of H can be
decomposed into doublets; i.e., the four-dimensional rep-
resentation �js0i; Q�js0i; Q�js0i; Q�Q�js0i� is reducible.
Let

jsi � js0i �
1

Es
Q�Q�js0i;

where Es > 0 is defined by Hjs0i � Esjs0i. Then Q�jsi �
0, and �jsi; Q�jsi� and �Q�js0i; Q�Q�js0i� form two irre-
ducible doublets. These simple properties of the states
make computing the Witten index [2],

W � tr
��1�Fe��H�; (5)

possible. Because the two states in a doublet have the
same energy, their contribution to W cancels, leaving the
trace only over E � 0 ground states. W is thus indepen-
dent of �, and can thus be found by evaluating (5) in the
�! 0 limit, where all states contribute with weight
��1�F. For example, for the hard-core fermions on a
cube, one finds W � 1� 8� 16� 8� 2 � 3, so that in
this case there are at least three ground states.

For another example, consider the six-site chain with
periodic boundary conditions. There is one state j0i with
f � 0, and six states cyi j0i with f � 1, while, because of
the hard cores, there are nine states with f � 2, and two
with f � 3. This meansW � 1� 6� 9� 2 � 2. We can
find these two ground states by grouping the other states
into doublets. The vacuum obeysQ�j0i � 0 andQ�j0i �P

6
i�1 c

y
i j0i, so �j0i; Q�j0i� form a doublet. The remaining

five states with f � 1 are all annihilated by Q� but not
Q�, so there are five doublets with �f; f� 1� � �1; 2�.
The states with f � 3 are both annihilated by Q� but not
Q�, giving two doublets with �f; f� 1� � �2; 3�. This
accounts for all the states save two with f � 2. These
two states cannot form a doublet, because they have the
same fermion number. They therefore must be singlets,
and so these states with f � 2 are the two E � 0 ground
states. With a little more work, one finds that they have
eigenvalues exp��i�=3� under translation by one site.

Finding the ground states for supersymmetric hard-
core fermions on a general graph poses a fascinating
combinatorial problem. The powerful tool of cohomology
theory allows us to compute the number of ground states
at any fermion number. The supersymmetry generatorQ�

satisfies �Q��2 � 0, and the E � 0 ground states are
precisely the states jsi that satisfy Q�jsi � 0 and that
cannot be written in the form jsi � Q�js0i. Those states
form what is called the cohomology of the operator Q�,
and for its computation a variety of techniques are avail-
able; we apply the ‘‘spectral sequence’’ technique here as
follows. We split the lattice in two sublattices, with cor-
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responding fermion-number operators F1 and F2, so that
F � F1 � F2. Q� can also be split as Q�

1 �Q�
2 , so that

Q�
i increasesFi by one. The two operatorsQ�

1 andQ�
2 are

nilpotent and anticommute. The first step in the spectral
sequence is to compute the cohomology of Q�

1 . Q�
2 be-

comes an operator acting on this cohomology, and the
second step is to compute the cohomology of Q�

2 on this
subspace. Often the process terminates here, and the result
is the cohomology of Q�. In general, the procedure con-
tinues for a finite number of additional steps (see, e.g., [3]
for details). A similar procedure exists for a decompo-
sition of a lattice into n sublattices, and, in particular,
when every sublattice consists of a single site. Applying
this to the N-site periodic chain, with F1 consisting of
every third site, we find ground states solely at fermion
number f � int
�N � 1�=3�. For a chain with N � 3p
with p integer, we find two ground states [so W �
2��1�p], while for N � 3p� 1, there is a single ground
state [so W � ��1�p].

We can see heuristically why a ground state for the
chain has f � int
�N � 1�=3�. The potential term in (6)
alone is minimized by the state with a fermion on every
third site; adding any more fermions forces fermions to be
two sites away and raises the energy. The hopping term
alone also discourages fermions from being only two sites
away, because it has negative eigenvalues when fermions
can hop to an adjacent site and back again, and the hard
cores prevent this if there is another fermion two sites
away. The state with a fermion on every third site,

. . .��������������������������� . . .

resembles a Néel state for a Heisenberg antiferromagnet.
It is not an eigenstate of the Hamiltonian: The full ground
state is disordered. However, like the Néel state, we ex-
pect this state to be a part of the ground state. Our
derivations of fGS � int
�N � 1�=3� confirm this intui-
tion. This heuristic picture also gives the fermion numbers
of the low-lying excited states. The excitations include
defects (domain walls) in the Néel-like state, such as

. . .��������������������������� . . .

The fermion number of this configuration is just one
higher than that of the Néel-like state, and it has three
identical defects. Since defects can be moved arbitrarily
far apart with no change in the potential, it is natural to
treat each defect as a quasiparticle with charge 1=3. The
existence of fractional charge in 1� 1 dimensions is an
old story; this was first discovered in field theory [4].

The cohomology technique is applicable to more gen-
eral models. Quantum dimer models are defined by plac-
ing the hard-core fermions cyi on the links instead of the
sites of a lattice. The product in P hii is then over links
which meet the link i, so that the projectors prohibit
overlapping dimers. On the chain with 3p sites, the
ground states have dimer number Nd � p, which is 2=3
120402-2
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of the value for close-packed dimers. For dimers on a two-
leg ladder with R� 1 rungs, we found that the number
NGS of ground states grows quickly with R, and that not
all ground states have the same dimer number, leading to
(partial) cancellations in the Witten index W. For ex-
ample, for R � 7, one finds five E � 0 ground states
with Nd � 5; 5; 5; 5; 6, so W � �3. Our results, asymp-
totically precise for R large, are NGS � �1:395�R and
W � �1:356�R. It will be interesting to see if supersym-
metry can be of use in other quantum dimer models [5].

We now analyze the one-dimensional case in more
detail. The Hamiltonian Eq. (4) is on an N-site chain:

H �
XN
i�1


Pi�1�c
y
i ci�1 � c

y
i�1ci�Pi�2 � Pi�1Pi�1�; (6)

where Pi � 1� cyi ci is the projector on a single site.
We take periodic boundary conditions, so indices are
defined modN. The translation operator T commutes
with both H and F, and its eigenvalues t satisfying
tN � 1 characterize the eigenstates of H. The Hamil-
tonian Eq. (6) resembles a lattice version of the
Thirring model, a �1� 1�-dimensional field theory with
a four-fermion interaction term. Below we will make the
connection precise.

We originally obtained the space of states for this
model by applying a systematic ‘‘finitization’’ procedure
[6] to the chiral spectrum of a specific two-dimensional
N � �2; 2� superconformal field theory (SCFT) with
central charge c � 1. This construction follows two
steps. In the first step, the full chiral Hilbert space of
the SCFT is written in a ‘‘quasiparticle’’ basis, with the
fundamental quasiparticles forming a supersymmetry
doublet with charges �1=3;�2=3�. In the second step,
the momenta of the individual quasiparticles are con-
strained to a maximum value in the order of N, corre-
sponding to a discretization of the space direction of the
SCFT with spacing of the order 1=N. This then leads
to a truncated or ‘‘finitized’’ partition sum QN�q;w�,
which is closely related to the partition sum ZN�q; w� �
Tr�q
N=�2�i�� logT w�N�3F��, which keeps track of the
eigenvalues of the translation operator T and the
fermion-number F of the lattice model Eq. (6). This entire
construction, to be detailed elsewhere, respects the super-
symmetry. This gives a rationale for the existence of
supersymmetry generators on this space of states, and it
provides an independent way of determining the quantum
numbers t and f of the supersymmetric ground states.
We remark that an analogous construction based on the
spinon basis of the simplest SU�2�-invariant CFT natu-
rally leads to the space of states of the Heisenberg
and Haldane-Shastry models for N spin-1=2 degrees of
freedom. Clearly, many generalizations are possible.

We have discussed how the space of states in the model
with Hamiltonian (6) arises from the finitization of the
c � 1 conformal field theory. Moreover, the lattice model
120402-3
and the SCFT have the sameWitten indexW � 2.We now
give the results of a Bethe ansatz computation [7]. which
makes the correspondence precise.

An eigenstate of H with f fermions is of the form

 �f� �
X
fikg

’�i1; i2; . . . ; if�c
y
i1
cyi2 . . . c

y
if
j0i; (7)

where we order 1 � i1 < i2 � 1< i3 � 2 . . . . Bethe’s an-
satz for these eigenstates is [8]

’�i1; i2; . . . ; if� �
X
P

AP%
i1�1
P1 %

i2�1
P2 . . .%

if�1
Pf ; (8)

for some numbers f%1; . . . ; %fg and AP; the sum is over
permutations P of the set �1; 2; . . . ; f�. By construction,
the translation operator T has eigenvalue t �

Qf
k�1%

�1
k .

For a generic model, this ansatz does not work, but in the
Heisenberg and other integrable models, the miracle is
that it does. Here, the ansatz gives eigenstates of energy

E � N � 2f�
Xf
k�1

�
%i �

1

%i

�
; (9)

when the %k obey the Bethe equations

t�1�%k�
N�f �

Yf
j�1

%k%j � 1�%k
%k%j � 1�%j

; (10)

for all k � 1; . . . ; f. These are very similar to the Bethe
equations for the antiferromagnetic XXZ spin chain at
� � �1=2 [9]. The only difference in (10) is in the left-
hand-side, which in the XXZ case reads �%k�N', where
' � 1 corresponds to twisted boundary conditions.

The supersymmetry doublets appear naturally within
the Bethe ansatz: If �%1; . . . ; %f� satisfies the Bethe equa-
tions, then the set �1; %1; . . . ; %f� also satisfies them. It is
straightforward to check that the states associated with
these two sets are related by  �f�1� � Q� �f�, and that
both sets have the same energy E.

The Bethe equations are f coupled polynomial equa-
tions of order N. They cannot be solved in closed form
and, to make further progress, one usually needs to take
N large. In our case, however, the supersymmetry allows
us to derive more results from the Bethe ansatz for
finite N. Precisely, we define wk in terms of %k as wk �
�%k � q�=�q%k � 1�, where q � exp��i�=3�. Then Bax-
ter’s Q function [9] Q�w� �

Qf
i�1�w� wk� has zeros at

w � wk. Defining R�w� � Q�w��1� w�N�f, we find
that, for the wk giving the ground state,

R�q�2w� � tq�NR�w� � t�1qNR�q2w�: (11)

We derive an explicit expression for R�w� in the sequel
[7], but from (11) directly we can rederive f and t for the
ground state(s).WhenN � 3pwith p an integer, there are
nontrivial solutions to (11) only when f � N=3 and t �
��1�N exp��i�=3�. For N � 3p, one has only a single
solution with f � int
�N � 1�=3�, and t � ��1�N�1.
120402-3
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We now discuss the field theory describing the contin-
uum limit of (6). When N is large, one can rewrite the
Bethe equations in terms of densities of roots [8], and then
derive integral equations (known as thermodynamic
Bethe ansatz equations) yielding the free energy. Our
model has the same thermodynamic equations as the
XXZ chain at � � 1=2, so the two models coincide in
the continuum limit. The continuum limit of the XXZ
chain is described by the massless Thirring model [10],
or, equivalently, a free massless boson � with action [11]

S �
2g
�

Z
dxdt
�@t��2 � �@x��2�:

The continuum limit of the � � 1=2 model has g � 2=3;
this is the simplest field theory with N � �2; 2� super-
conformal symmetry [11]. The �2; 2� means that there are
two left and two right-moving supersymmetries: In the
continuum limit, the fermion decomposes into left- and
right-moving components over the Fermi sea. The boson
also can be decoupled into left and right pieces, so that
� � �L ��R, while its dual e�� � g��L ��R�. The
states of the field theory are given by the vertex operators
Vm;n � exp�im�� in e���, of conformal dimensions
hL;R � �m� gn�2=�4g�. The four components of the
Dirac fermion in the Thirring model are V�1;�1=2, while
the supersymmetry generators are Q�

L � V�1;�3=2 and
Q�
R � V�1;�3=2. In a finite size L, the lowest-energy state

is in the Neveu-Schwarz sector, where the Thirring fer-
mion has antiperiodic boundary conditions. This state
has ENS � ��=�6L�. The lowest-energy states in the
Ramond (periodic boundary conditions) sector are given
by j�iR � V0;�1=2j0iNS; both have energy zero. States in
this conformal field theory can be built up by operating
with the ‘‘spinons’’ V�1=3;�1=2.

Comparing this superconformal field theory with the
lattice model on N � 3p sites, we identify our two E � 0
ground states with the two Ramond vacua; all other states
of the lattice model are in the Ramond sector as well.
The U(1) quantum number m corresponds to f� N=3
(the fermion number relative to the ground state). The
spinons here have charge �1=3, so it is natural to identify
these with the fractionally charged excitations in the
lattice model.

We close by noting several generalizations of our con-
struction. Here the space of states is made up solely of
fermions on which the supersymmetry acts nonlinearly,
but in the sequel [7] we will study linear realizations as
well. Other supersymmetric models arise by including
more projectors in (3), or by including several species of
fermions. Consider a two-species model, with fermions
labeled by � and �, and with the conditions that (i) a
single site may not be occupied by two particles and
(ii) same-type particles may not occupy nearest neighbor
120402-4
sites. On a periodic chain with 4n sites, the Witten index
of this model turns out to be W � 3, and we have strong
indications that the continuum limit of this theory is the
second model (at c � 3=2) of the series of N � 2 mini-
mal superconformal field theories. A typical ground-state
pattern is

. . . � � �� �� �� �� �� � . . .

and one recognizes the possibility of domain walls of
charge �1=2 (� �� �) and neutral defects (� ��).
The �=� pattern indicates an Ising substructure in the
model, in accord with the fact that the c � 3=2 N � 2
minimal model can be written in terms of a Majorana
fermion and a free boson.
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