
P H Y S I C A L R E V I E W L E T T E R S week ending
21 MARCH 2003VOLUME 90, NUMBER 11
Gradient-Limited Surfaces: Formation of Geological Landscapes

Jaan Kalda
Institute of Cybernetics, Tallinn Technical University, Akadeemia tee 21, 12618 Tallinn, Estonia

(Received 9 April 2002; revised manuscript received 25 October 2002; published 19 March 2003)
118501-1
A simple scenario of the formation of geological landscapes is suggested, and the respective lattice
model is derived. Numerical analysis shows that the arising non-Gaussian surfaces are characterized by
the scale-dependent Hurst exponent varying from 0.7 to 1, in agreement with experimental data.

DOI: 10.1103/PhysRevLett.90.118501 PACS numbers: 91.10.Jf, 05.40.–a, 64.60.Ak, 68.35.Ct
cesses into a robust self-affine model of the Earth’s sur- will take place far from the fault, at the edges of the
Rough interfaces around us, such as Earth’s surface
[1,2], surfaces of deposited films [3], wetting fronts [4],
cloud perimeters [5], fracture surfaces [6], etc., are com-
mon objects, the properties and formation of which have
been studied for several decades. In some cases, signifi-
cant advances in theoretical understanding have been
achieved. In particular, this applies to the surface growth
processes, the analysis of which has led to a wide variety
of kinetic roughening models; cf. [7,8]. However, many
processes leading to rough surfaces, e.g., the formation of
fractures and Earth’s landscapes, are less understood.

The formation of the Earth’s surface is a complex pro-
cess, affected by various phenomena, such as seismic and
tectonic activity, erosion, sedimentation, etc. These phe-
nomena, in their turn, can be of diverse nature. Thus,
erosion can be caused by meandering rivers, oceanic and
atmospheric influence, by the motion of ice, avalanches,
and so on. Furthermore, the physical properties of the
ground vary in a very wide range. Incorporating all this
diversity into a concise embraceable mathematical model
is a hopeless task. However, the scale-invariant properties
of the geologic landscapes have been found to be surpris-
ingly universal: in a reasonable approximation, they are
typically self-affine, with the Hurst exponent ranging
betweenH � 0:7 and 0:9 [1]. More recently, experimental
evidence has been provided that the self-affine behavior
is not perfect and the differential Hurst exponent h is
a decreasing function of scale, h� 0:8 being character-
istic to smaller scales; see Ref. [2] and references therein.
So, it is natural to expect that there is a simple, universal,
and robust mechanism leading to such surfaces. Here we
show that such a mechanism can be provided by the com-
petition of erosion and tectonic activity: the model of
gradient-limited surfaces incorporates these two effects
in their simplest form and leads to realistic landscapes.

Most models of geological landscapes are based on the
evolution of river networks [9]; a more generic approach
models the erosion on a slope via a stochastic equation
(resulting in direction-dependent exponents H � 0:63
and 0:83) [2]. The evolution of rivers and erosion undoubt-
edly play an important role in the formation of land-
scapes, but are not able to increase the height of the
mountains. The only attempt of including tectonic pro-
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face has been made by Mandelbrot [1]. He modeled
roughening due to tectonic activity; the method can be
outlined as follows. Inside a polygon (Earth’s surface), a
random point is coined. Through that point, a line of
random direction is drawn. This ‘‘fault line’’ divides the
polygon into two parts, one of which is elevated (with
respect to the other) by a unit height. The procedure is
repeated N ! 1 times. The Brownian growth of height
differences is eliminated by normalizing the surface
height to

����
N

p
. This results in a self-affine surface with

H � 0:5. In order to address the discrepancy between
the model and empirical values H � 0:7–0:9, the model
has been generalized by replacing the Heaviside profile
of the ‘‘fault’’ by a profile with singularity (so that the
height change across the fault �h � jxj�sgnx, j�j< 1

2 ).
The tectonic activity and formation of faults, as cap-

tured by the Mandelbrot model, certainly play an im-
portant role in the evolution of the Earth’s surface.
Meanwhile, singular fault profiles have no physical mo-
tivation, and there are no physical processes normalizing
the surface height to the number of faults. Instead, the ba-
sic effect reducing the height differences is erosion. The
excessively detailed erosion models, however, are not
suited for revealing the most generic aspects of landscape
roughening. Therefore, we opt for the simplest possible
approach and assume that erosion effectively imposes an
upper limit to the modulus of the gradient of the surface
height. More specifically, we assume that, as soon as a
slope becomes steeper than a threshold value, the excess
of the height drop is spread over the neighboring regions.
Such a smoothing of too steep slopes can be accom-
plished, for instance, by avalanches.

To begin with, let us define this model for a continuous
medium. A random point P and direction � define a fault
line inside a polygon of diameter L� 1. This line di-
vides the polygon into two parts, one of which (leftmost,
with respect to the direction �) is elevated by a unit
height. The height drop is spread over the nearest neigh-
boring regions in such a way that the modulus of the local
gradient remains everywhere below a threshold value, i.e.,
jr j< 1. If the fault line goes through a region of a
saturated slope, the avalanches can affect large areas.
Then, the actual elevation (the change of surface slope)
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saturated slope. These edges will be referred to as the
elevation lines. The procedure is repeated N ! 1 times.
This model has a lower cutoff scale, the height drop at a
fault divided by the threshold gradient.

The model can also be formulated on a lattice. A natu-
ral basis for this is given by the six-vertex (6V, restricted
solid-on-solid) model [3,10]. On the square lattice of the
6V model [Fig. 1(a)], all the edges are marked with
arrows so that each vertex has an equal number of in-
coming and outgoing arrows. The arrows define an in-
compressible flow, the stream function of which is our
surface; each arrow represents a unit jump in the surface
height. The mean slope is defined by the mean density of
unidirectional arrows, which is limited by the grid step;
i.e., the slope steepness is constrained automatically.

Consider an oriented chain of arrows dividing the
lattice into two parts [see Fig. 1(a)]. Swapping the direc-
tion of all the arrows of the chain is legitimate, because
for all the affected vertices, the number of incoming
arrows is conserved. It corresponds to the lowering of
one part of the surface with respect to the other part by
two units. Therefore, directed chains of arrows can play
the role of elevation lines. Gradient-limited surfaces are
obtained as follows. A random vertex of the lattice P and
a random direction � are coined, they define an aim line,
the site of the ‘‘fault.’’ That part of the surface, which is
leftwards to the aim line, is to be elevated. The elevation
is accomplished along such a directed chain of arrows,
which follows as closely as possible the aim line. Similar
to the continuous case, if the aim line goes through a
region of counterdirected arrows (saturated slope), the
elevation line is forced to go around those regions. There
are different technical options of how to minimize the
distance between the elevation line and the aim line. In
FIG. 1. The algorithm of finding the elevation line (bold)
using the lattice of the 6V model (darker areas are lower).
First, the origin P and direction � of the aim line (dashed) are
coined. The elevation line is such a directed chain of arrows,
which follows the aim line as closely as possible. For the fastest
algorithm, it is traced step by step, starting from the origin P,
towards both ends of the aim line. At each step, there are two
possibilities to continue the line, since there are two outgoing
arrows from each vertex. The selection is based on two rules:
(i) displacements opposite the axes of the quadrant [I–IV (b)]
of the vector � are not allowed (e.g., for quadrant I, leftwards
motion is excluded); (ii) that option is to be selected, which
leads closer to the aim line. The (signed) departure from the
aim line is tracked as s � x sin�� y cos�, where x and y are
the displacement coordinates, and � is the angle between the
x axis and the aim line in (c). The elevation line is terminated
as soon as it reaches the boundary of the polygon.
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particular, it can be done locally and globally. However,
the scaling properties of the resulting surfaces are insen-
sitive with respect to the particular choice; for our main
series of simulations, we used the fastest algorithm (de-
scribed in Fig. 1). The gradient-limited surfaces are ob-
tained at the long-time limit, when the number of
elevations exceeds the relaxation time (which scales as
the number of vertices in the polygon; see below), and the
initial shape of the surface becomes irrelevant.

A simulation result is presented in Fig. 2. Observe the
shape of the elevation line: in the region of a saturated
slope, it has to depart far from the straight aim line.
These regions are responsible for the long-range correla-
tion of the surface height increments. Qualitatively, the
saturated slopes are caused by accumulated excess of the
‘‘faults’’ of a certain direction. If there were no ava-
lanches, that excess would fluctuate as the square root
of the number of ‘‘faults,’’ tending to infinity. Therefore,
the presence of large saturated slopes should not be sur-
prising. As it will be shown below, in a one-dimensional
(1D) case, the accumulation phenomenon gives rise to
H � 1 (i.e., typically, a saturated slope occupies the
whole polygon). In 2D geometry, the accumulation effect
is weaker and leads to a complex (inaccessible with stan-
dard analytic methods) scaling behavior.

The 1D version of the model is most conveniently
formulated as a spin exchange problem, and admits ana-
lytical solution. This analytic approach helps us to under-
stand the features of the 2D model. Suppose there is a
sequence of spins, ’i � 	1. It is convenient to consider
infinite periodic sequence, ’i
N � ’i, where i 2 Z and
FIG. 2. A gradient-limited surface, polygon size Lmax �
2049. Darker areas correspond to lower regions of the surface,
and black and white lines depict equidistant level lines. Black
line surrounded by white is an elevation line.
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FIG. 3. Gradient-limited surfaces: numerical results. The
numbers 65–1025 indicate the edge length Lmax of the polygon.
The finite difference approximation of the differential rough-
ness exponent ~hh is plotted versus the logarithmic relative scale
�. There is no strict self-affinity of the surface. However, at
the limit Lmax ! 1, there is an asymptotic dependence
~hh�; Lmax� ! h�� (dotted line). The asymptotic convergence
is clearest in (b), where the integral exponent ~HH is plotted
against the polygon size. The simulations have been carried out
with an assembly-optimized code on the cluster of ten 1-GHz
Athlon workstations during two months (covering 2� 105

decorrelation times for Lmax � 1025).

FIG. 4. The data of real landscapes [13] support the two most
important features of the gradient limited surfaces: (a) dif-
ferential Hurst exponent increases towards small scales tending
to h � 1, and (b) small contour lines occupy less space than
large ones implying that the size-distribution exponent k > 0.
The same trends have been observed for all the analyzed
mountain regions (Himalayas, Pamirs, Caucasus, etc.). Note
that the observation k > 0 provides a direct evidence for the
qualitatively significant non-Gaussianity of these landscapes.
The very small roughness h� 0:4 at large scales can be ex-
plained by the domination of other mechanisms (possibly re-
ducible to the Kardar-Parisi-Zhang model) at these scales [2].
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N is the period. The spins ’i can be interpreted as the
increments of a self-affine curve  j �

Pj
i�0 ’i. A random

point k and a random spin increment � � 	2 are coined.
The increment is to be added to the kth spin, or, if it is
not possible (resulting in ’k � 	3), to the nearest suit-
able spin (i.e., to ’l � ��	 1 with a minimal value of
jl� kj). If there is no suitable spin at all, the next pair of k
and � are coined. The procedure is repeated ad infinitum.
Let us denote the relative number of positive spins by �.
Then, the height drop of the above defined self-affine
curve  j at distance N is Nj2�� 1j. The quantity �
performs Brownian fluctuations, because at each time
step it is randomly incremented by 	N�1. At the limit
N ! 1, the probability density function n�; t� evolves
according to the diffusion equation, nt � Dn�� withD �
2N2��1 and no flux at the boundaries, n�0; t� �
n�1; t� � 0. The stationary solution n�; t� � 1 allows
us to calculate the delta variance h i
N �  i�

2i �
N2

R
1
02�� 1�2d� � N2=3, which corresponds to H � 1.

The relaxation time of the spin exchange problem can be
found as the diffusion time, � � N2 (time is measured in
the number of spin exchanges). The relaxation time of
the 2D model is estimated in the same way, because the
height difference between left and right edges of the
polygon performs also nearly Brownian fluctuations
(however, the Brownian behavior breaks up for nearly
saturated slopes: those elevation lines, which would make
the slope steeper, tend to incline outside the polygon).

For 2D geometry, the simulations indicate that the
gradient-limited surfaces are not strictly speaking self-
affine. However, the data collapse is achieved by intro-
ducing the differential Hurst exponent,

h�� � 1
2d logha

2
Li=d logL; � � logL= logLmax: (1)

Here aL is the height of the surface at the distance L from
the center of the polygon of size Lmax; angular braces
denote averaging over different realizations of the sur-
face. In Fig. 3, the differential Hurst exponent is approxi-
mated by ~hh�; Lmax� � logha2i i=ha

2
i
1i��logLi=Li
1��

�1,
where i and i
 1 are neighboring data points and � �
logLiLi
1�= logL

2
max. At the limit Lmax ! 1, the curves

converge to the asymptotic function h��. Note that at the
extreme right-hand side of the plot, the ~hh�; Lmax� curves
show a rapid falloff, and the convergence is not as good as
elsewhere; this is explained by finite-size effects and by
the fact that for � � 1, the finite differences fail provid-
ing an acceptable approximation for the derivative in
Eq. (1). As a consequence, the values ~hh & 0:65 are not
reliable. For large scales with � * 0:9 (which are most
interesting in the context of the Earth’s surface), the h��
law can be found by extrapolating the asymptotic curve
[dashed line in Fig. 3(a)]. The conclusion h � 0:7–0:9 for
0:5< �< 1 is in good agreement with the geological
observations [1,2] (intriguingly, similar values are re-
corded for the fracture surfaces [6,11,12]). Experimental
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data also confirm that ~hh increases towards small scales
[2]; see also Fig. 4(a). The scale dependence of h is a result
of interaction between tectonic processes and erosion:
incorporating only the first [1] or the second process [2]
leads to scale-invariant values of h.

Finally, the scaling of the edge-to-edge height drop of
the gradient-limited surfaces is given by the integral
Hurst exponent H �

R
1
0 hd�: haLmax�

2i / L2H
max. The nu-

merical result H � 0:91	 0:01 [see Fig. 3(b)] shows the
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FIG. 5. Differential scaling exponents of the contour loops of
gradient-limited surfaces. Finite difference approximation of
the fractal dimension of a single loop ~dd (a) and of the contour
loops size-distribution exponent ~kk (b) are plotted versus the
scale �. The numbers 65–1025 indicate the polygon size Lmax.
The dotted line depicts the asymptotic dependence
~dd�; Lmax� ! d��. The dashed line is calculated using the
dependence h�� [see Fig. 3(a)], and the fractal dimension for
Gaussian self-affine surfaces. Positive values of ~kk indicate that
there is an anomalously small number of small contour loops
(as compared with the Gaussian surfaces).
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existence of a nontrivial asymptotic curve h�� (sinceR
1
0 hd� � 0:91), making the model clearly distinct from

all the known universality classes, and has been used to
test the asymptotic (dotted) curve in Fig. 3(a).

The observed generalized scale invariance with critical
exponents depending on scale is not unique. For instance,
similar behavior has been observed for certain forest fire
models [14]. In our case, the Hurst exponent increasing
towards small scales is caused by the presence of large
areas of saturated slope. Indeed, consider a random pair
of points. If the distance L between them is small, the
points are likely to reside inside a single region of satu-
rated slope. Hence, their average height difference scales
almost as L, implying h � 1. On the other hand, larger
saturated slopes are rarer than the smaller ones. There-
fore, for a more distant pair of points, falling inside a
single saturated slope is a rare event, and the conclusion
h � 1 is no more valid.

For Gaussian self-affine surfaces, all the scaling expo-
nents of statistical topography are functions of the Hurst
exponent H. However, the gradient-limited surfaces are
not Gaussian, as evidenced by the presence of large
saturated slopes. Therefore, the exponent h�� alone
does not provide a complete description of the surface.
First we consider the differential fractal dimension of
the contour loops (‘‘coastlines’’), d � d loghlLi=d logL
(l is the length, and L is the diameter of a loop). The
numerical results are given in Fig. 5(a). For Gaussian
surfaces, the fractal dimension of contour loops DH� �
1:5� 0:5H [8,15]. The dotted line [Fig. 5(a)] is the
asymptotic (Lmax ! 1) dependence d��, and the dashed
line is the curve, calculated on the basis of the functions
h�� (Fig. 3) and DH�. Evidently, D�h��� � d��.
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An even more pronounced mismatch between the
Gaussian surfaces and the gradient-limited surfaces is
observed for size distribution of the contour loops. Let
pL� denote the probability that a randomly chosen point
belongs to such a contour loop, the diameter of which is
between L and 2L. Then, for Gaussian surfaces we would
expect that pL� / Lk, where k � DH� � 2�H�< 0
[8,16]. For gradient-limited surfaces, a convergence of
the ~kk�; Lmax� curves to the asymptotic dependence
k�� > 0 is clearly observed up to � � 0:85 [see
Fig. 5(b)]; above that scale, convergence is slow due to
finite-size effects. The inequality k > 0 means that, as
compared with the Gaussian surfaces, there is a signifi-
cantly smaller number of small contour loops, and is
explained by the fact that the saturated slopes can be
embraced by large contour loops, but leave almost no
room for small ones. Exactly such a non-Gaussian be-
havior is observed for real landscapes; see Fig. 4(b).

In conclusion, the new model of gradient-limited sur-
faces leads to non-Gaussian surfaces of a scale-dependent
differential Hurst exponent. The latter varies from h � 1
for small scales, up to h � 0:7 for large scales. This is in
reasonable agreement with the experimentally observed
roughness of real geological landscapes.
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