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Spin-Polarized Conductance Induced by Tunneling through a Magnetic Impurity
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Using the zero mode method, we compute the conductance of a wire consisting of a magnetic
impurity coupled to two Luttinger liquid leads characterized by the Luttinger exponent ��� 1�. We find
for resonance conditions, in which the Fermi energy of the leads is close to a single particle energy of
the impurity, that the conductance as a function of temperature is G� �e2=h��T=TF�

2���2�, whereas for
off-resonance conditions the conductance is G� �e2=h��T=TF�

2���1�. By applying either a gate voltage
or a magnetic field or both, one of the spin components can be in resonance while the other is off
resonance causing a strong asymmetry between the spin-up and spin-down conductances.
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FIG. 1. Schematic illustration of (top) the structure consist-
ing of two Luttinger liquid leads, extending between (� L and
�a) and (a and L), connected by a hopping matrix element � to
a magnetic impurity extending between (� a and a), and
(bottom) energy level diagram showing the chemical potential
of the left (�L) and right (�R) leads and the energy levels of the
magnetic impurity. VDS is the voltage applied between the two
the wire is qualitatively different for the off-resonance leads.
Quantum ballistic transport is crucial in understanding
mesoscopic electronic devices. Examples include the
single electron transistor [1] and the mystery of the point
contact 0:7�2e2=h� conductance [2]. In recent years it has
become clear that the spin degree of freedom can play a
critical role in quantum ballistic transport. The appeal-
ing possibility of realizing a spin-polarized transistor [3]
has stimulated research in spin dependent transport [4,5].
In the quantum wire regime the presence of electron-
electron (e-e) interactions gives rise to a spin-charge
separated Luttinger liquid, where transport is controlled
by the charge exponent [6]. In order to obtain spin de-
pendent conductance in the quantum regime one must
break the Luttinger liquid spin symmetry. There are
several possible approaches to break the spin symmetry.
In a recent publication, one of us [7] has shown that in the
presence of e-e interactions and spin dependent Fermi
velocities, VF" � VF#, transport is governed by spin de-
pendent transport exponents which gives rise to a wire
with spin-polarized conductance.

In this Letter we propose a new mechanism leading to
a spin-polarized quantum wire. We consider a ‘‘wire’’
consisting of two leads coupled together through a mag-
netic impurity. Each lead is a one-dimensional Luttinger
liquid. The impurity has two electronic levels, one for
each spin. The single particle levels in the impurity obey
j"" � "#j 	 � (where � is the Zeeman energy). The left
Luttinger liquid is confined to �L 
 x 
 �a and the
right one to a 
 x 
 L, where L� a. The magnetic
impurity is confined to jxj 
 a. A schematic diagram of
the structure is depicted in Fig. 1. Because of the Zeeman
splitting the conductances G" and G# of the wire can be
different. Such a wire can be realized in a semiconductor
device structure in which the electron density of the leads
can be varied by a gate voltage. The gate voltage can
change the Fermi energy of the leads to achieve a situ-
ation where j"" � EFj � j"# � EFj ! 0. Transport across
0031-9007=03=90(11)=116802(4)$20.00 
j"" � EFj � � and the resonance j"# � EFj  � cases,
where � is the matrix element coupling the leads to the
impurity. (To be specific, we take spin-down to be in
resonance and spin-up to be off resonance.) We first
present an intuitive discussion of the conductance in the
two cases and then derive the results in detail.

For the off-resonance case we can replace the matrix
elements � between the impurity and the leads by an ef-
fective ‘‘weak link’’ between the two leads with an ef-
fective coupling t" 	

�2

j""�EFj
. We thus obtain a weak link

problem in the Luttinger liquid description with a cou-
pling Hamiltonian: t"�C�

" �a�C"��a� � H:c:�. Following
Luttinger theory [6], we find for the conductance, G" �
e2
h jt"j

2� TTF�
2���1�, where � is the Luttinger exponent � 	

1
2 �

1
Kc

� 1
Ks
� � 1; here Kc and Ks describe the charge- and

spin-density-wave interactions, respectively. � 	 1 cor-
responds to the noninteracting case.
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In the resonant case, the limit j"# � EFj ! 0 allows us
to replace the matrix element � between the impurity and
the leads by an effective coupling between the two leads,
t# � �2, that corresponds to tunneling between the two
leads at different times. We find a new tunneling problem
with long time correlations, t#

R
t
0 dt1�C

�
# ��a; t�C#�a; t1��

H:c:�. The additional time integration changes the scal-
ing dimensions of t# by one. Because of the long time
correlations, we find that the resonance condition gives
rise to a shift in the tunneling exponent, �! ��� 1�.
The conductance for the resonant case becomes G# ’
e2
h jt#j

2� TTF
�2���2�. As a result, the conductance for the off-

resonance case is much smaller than that for the resonant
case: G"  G# leading to a spin-polarized current, I" 
I#. For temperature T ! 0 and 1<�< 2, we obtain
G" ! 0 and G# !

e2
h .

We now quantify the above qualitative discussion and
present our model and results in detail. The Hamiltonian
for the wire can be split into three parts. H 	 Hleads �
Hi �HT , whereHleads 	 HL �HR represents the left and
right Luttinger liquids. The magnetic impurity is de-
scribed by the Hamiltonian Hi 	

P
�	";# "�d

�
�d�, where

"" � "#, ~""� 	 "�� ���< 0, ��� 	 1
2 ��L��R�, and eVDS	

�L��R. Here "� is the single particle energy in the
impurity for spin � electrons, �L and �R are the chemi-
cal potentials in the leads, and VDS is the voltage between
the left and right leads. This Hamiltonian describes either
an impurity in a magnetic field or a ferromagnetic impu-
rity [8,9]. The tunneling Hamiltonian is given by
116802-2
HT 	��
X
�	";#

�d��C��a�� d��C���a���H:c:

This model for the impurity can be viewed as a mean
field approximation to a spin S in a magnetic field:

~HHi 	
X
�

"dd��d� � J
X
�;�0

�d�� ~���;�0d�0 � � ~SS � g�BSzHext

� g��B
1

2
�d�" d" � d�# d#�Hext:

The spin need not be S 	 1=2; for example, S 	 5=2 for
manganese. Here Hext is the external magnetic field, S is
the impurity spin, ~�� is the vector composed of Pauli
matrices, and g; g� are the gyromagnetic ratios for the
impurity spin and an electron from the leads, respectively.
In the mean field approximation we replace ~SS ! hSzi. As a
result ~HHi ! Hi 	

P
�	";# "�d

�
�d� with "" � "# � � 	

JhSzi � g��BHext � �BHext�gJBs�T� � g��. Here Bs�T�
is the Brillouin function. This mean field result is a
good approximation for large spin S. For a large magnetic
field and a large spin S it is justified to neglect transverse
quantum fluctuations in S and to replace ~HHi with Hi.

We integrate the impurity degrees of freedom and find
d��t� 	

i�
�h

R
t
0 dt1K��t� t1��C���a; t1��C��a; t1��. Next,

we substitute d��t� and d�� �t� into the tunneling Hamil-
tonian and obtain the time dependent tunneling Hamil-
tonian ~HHT�t� between the two leads. The tunneling
Hamiltonian ~HHT�t� takes the form
~HHT�t� 	 �
i�2

�h

X
�	";#

Z t

0
dt1fK��t� t1��C�

� �a; t�C���a; t1� � C�
� ��a; t�C��a; t1� � C�

� �a; t�C��a; t1�

� C�
� ��a; t�C���a; t1��; (1)
where K��t� t1� 	 i�G>
� �t� t1� �G<

� �t� t1��. Here
G>
� �t� t1� and G<

� �t� t1� are the advanced and retarded
Green’s function for the impurity. For an isolated impu-
rity K��t� t1� 	 e�i!��t�t1� and !� 	 ~""�= �h.

To derive a continuum approximation, we introduce
a momentum cutoff � for the fermions C��x�, C�

� �x�
and integrate out states with momentum jqj > �.
This integration induces a self-energy for the single
particle states in the impurity !� ! ~!!� � i��, where
�� 	 �L� 	 �R�, �� 	 2�2

RKF��
0 dq'�"� � E��q��, and

E��q� is the single particle excitation energy in the
leads far from the Fermi energy. [If ~""�!0 and
q<KF��, there is no solution, "�	ER�L�� �q� giving
rise to ��	0.] We now consider j~""#j ’ �hVF�,
�	 1

a , and j~""#j �hVF�. This gives rise to two different
scaling dimensions of the tunneling operator in Eq. (1).
The fermion operators ĈC��x� restricted to momentum
jqj
� replace the bare fermion operators C��x�.

At long wavelengths we replace the fermions ĈC��x� by
the bosonic representation. We use open boundary con-
ditions for the right and left leads. Following Ref. [10], we
have for the left lead ĈC��x 	 �L� 	 ĈC��x 	 �a� 	 0.
The bosonic representation for the fermions in the left
lead is given by

ĈC��x <�a� 	
1���������
2(a

p )L;�e
i��� ei��(=L�N��KF�xei

�����
4(

p
+��x�

� e�i��(=L�N��KF�x

� ei
�����
4(

p
+���x��: (2)

)L;� is a real Majorana fermion, +��x� is the bosonic
variable, and ���;N�0 � 	 �i'�;�0 are the zero mode vari-
ables for the left lead. Here 0
 �� 
 2( is the zero mode
phase conjugated to the number operator N�. Follow-
ing Ref. [10] we find the bosonic form of the Luttinger
liquid in the left lead as follows: HL 	H�n	0�

L �H�n�0�
L ,

H�n	0�
L is the zero mode part, H�n	0�

L 	 �h(
4L Vc�N" �N#�

2�
�h(
L Vs�

N"�N#

2 �2, H�n�0�
L is the bosonic part, and

H�n�0�
L 	

R
L
�L dx�Vc�@x~++c�

2�Vs�@x~++s�2�, where ~++c and
116802-2
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~++s represent the renormalized bosonic fields, +�x�c�s� 	
K1=2
c�s�

2 �~++�x�c�s� �
~++��x�c�s� � �

K�1=2
c�s�

2 �~++�x�c�s� �
~++��x�c�s� �, +c�x� 	 �+"�x� �

+#�x��=
���
2

p
, +s�x� 	 �+"�x��+"�x��=

���
2

p
with Kc < 1,

Ks � 1. Kc and Ks describe the interactions of the charge
and spin excitation.N" andN# are the added electrons with
116802-3
respect to the Fermi energy. N" �N# is the added charge
and N"�N#

2 is the added spin. +�x�c and +�x�s are bare charge
and spin particle hole excitations. H�n�0�

L represents the
bosonic charge and spin density wave excitations with
charge and spin velocities Vc and Vs, respectively. For the
right lead a
 x
 L we also use open boundary condi-
tions, ĈC��x	 L� 	 ĈC��x	 a� 	 0:
ĈC��x > a� 	
1���������
2(a

p )R;�ei.��ei��(=L�n��KF�xei
�����
4(

p
 ��x� � e�i��(=L�n��KF�xei

�����
4(

p
 ���x��; (3)

where  ��x� is the bosonic field in the right lead [the equivalent of +��x�], and .�n� are the zero mode variables,
�.̂.�; n�0 � 	 �i'�;�0 . Here .� is the equivalent of ��, and n� is the equivalent of N�. For simplicity, we assume that the
right lead is identical to the left one. The Hamiltonian for the right lead obeysH�n	0�

R �n"; n#� � H�n	0�
L �N" 	 n";N# 	 n#�

and H�n�0�
R � "; #� 	 H�n�0�

L �+" 	  "; +# 	  #�.
We substitute the bosonic representation given by Eqs. (2) and (3) into Eq. (1) and find the effective tunneling

Hamiltonian hT�t�; between the leads

hT�t� 	 �i0
X
�	";#

)R;�)L;�
Z t

0
dt1fK��t� t1��e�i ̂ ��t�ei+̂+��t1� � e�i+̂+��t�ei ̂ ��t1�� � H:c:g: (4)

In Eq. (4) we have used the notations +̂+� 	 ���
�������
4(

p
+�,  ̂ � �.��

�������
4(

p
 �, 0� �2��2 2sin�K

R
Fa� sin�K

L
Fa�

ah , and KR
F 	KL

F.

The tunneling current computed within the zero mode formulation is given by I� 	 e dn̂n�dt 	 �e dN̂N�
dt 	 1

2 e
dĴJ�
dt , and

ĴJ� 	 n̂n� � N̂N�. This ĴJ� is expressed in terms of J� 	 n� � N� � i� d
d��

� d
d.�

� � 2i d
d��

, where �� � �� � .�,
���; J�� 	 �2i. Here J� is the current operator in the Schrödinger picture, and ĴJ� is the current operator in the
Heisenberg picture. Using the interaction picture we express the current operator ĴJ��t� in terms of the Schrödinger
current, J�,

hhĴJ��t�ii 	
��
Tct

�
exp

�
�i
�h

Z
ct

hT�t1�dt1

	

J�

��
: (5)

In Eq. (5) hh ii stands for the thermodynamic average at temperature T with respect to the zero mode Hamiltonian:

H�n	0�
L �H�n	0�

R ��L�N" � N#� ��R�n" � n#�, eVDS � �L ��R, and bosonic partH�n�0�
R �H�n�0�

L . Here Tct indicates
time order and Ct is the contour in the Keldysh representation [11]. We find to second order in 02 / �4 from Eq. (5) that
the current I� 	 e

2 hh
dĴJ��t�
dt ii is given by

I� 	 e
�
�i
�h


2
i
��Z t

0
dt1

�
hT�t1 � i"�

d
d��

hT�t� �
1

2

�
d
d��

hT�t�

�hT�t1 � i"� � hT�t1 � i"��


��
: (6)
Equation (6) is our result for the tunneling current ex-
pressed in terms of the zero mode derivative of the
tunneling Hamiltonian. The excitation values in Eq. (6)
depend on the bosonic correlation function:

hhei
�����
4(

p
+�t�
c�s�e�i

�����
4(

p
+
�t1�

c�s� ii 	

(
i (VFLT�

sinh�(VFLT�
�t� t1��

)
1=Kc�s�

;

where L� LT 	 �hVF
KBT

is the thermal length; similar cor-
relations exist for the  � fields. From the zero mode
part (see Ref. [10]), we find in the limit L� LT ,
hhn" � n# � N" � N#ii 	

eVDS
h �2LVc� and hhei���t�e�i���t1�ii 	

exp�i !DS�h �t� t1��, !DS � 2( eVDS
�h .

We first evaluate the nonresonant case, j~"""j 	
j"" � EFj � �. This allows us to compute the spin up
current I". Using Eq. (6) we find
I" 	
e

�h2

"
~002

��"" � ����= �h�2 � �2"

#

�
Z t

0
dt12i sin!DS�t� t1�� R�t� t1 � i"�

� R�t� t1 � i"��; (7)

where

R�t� t1 � i"� 	

" (VF
LT�

sinh�(VFLT�
�t� t1 � i"��

#
2�

with 2� � 2� 12Kc �
1
2Ks

�. Equation (7) is obtained after the
impurity degrees of freedom have been integrated out.We
obtain a weak link problem in a Luttinger liquid frame-
work. We perform the integral in Eq. (7) for the linear
voltage regime, VDS ! 0, and find for the conductance,
G" 	 I"=VDS,
116802-3
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G" 	
e2

�h

�
4~002

��"" � ����=�h�2��2"

	
(cos�(��
��2��

�
T
TF


2���1�

; (8)

where bT 	LT�� TF
T � 1. [The coupling constant 0 is

related to the dimensionless coupling constant 0̂0,
0� 0̂0�h�VF��2	 ~00�h�VF��, and ��2�� is the Gamma
function.]

The result in Eq. (8) shows that for � > 1 the conduc-
tance decreases at low temperature. Except for the reso-
nance factor, Eq. (8) is the Luttinger liquid result obtained
for a weak link [6]. For this case we can use the weak link
scaling theory, d0̂0ds 	 �1� ��0̂0, es >bT	

�hVF�
kBT

. For T!0
and �>1 we obtain G" !0. This means that the spin up
current I" is completely backscattered by the impurity.

Next we consider the resonance case ~""# ! 0. In this
limit K#�t� t1� � 1. As a result, in evaluating Eq. (6)
we find that the singular integrals are shifted from
�t� t1�

�2� to �t� t1�
�2���1� in agreement with ‘‘long

time’’ correlation. This gives the conductance G# 	
I#
VDS

as

G# 	
e2

�h
40̂02

(cos(�
�1����2���

1

��2��� 1��

�
T
TF


2���2�

; (9)

where �> 1 and ��2��� 1�� is the Gamma function. The
result in Eq. (9) shows that the current I# increases at low
temperatures if 1<�< 2.

The spin polarization of the current depends on the
ratio G"=G# � � TTF

�2, which decreases at low temperatures
giving perfect spin polarization P 	

G#�G"

G#�G"
! 1. There-

fore the magnetic impurity acts as a spin polarizer. The
result in Eq. (9) is in agreement with the scaling equation,
d0
ds 	 �2� ��0. The change in the scaling dimension of 0̂0
(as compared to the Luttinger case) is due to the long time
correlation which induced an additional time integration.
Thus for 1<�< 2, 0 increases at long distances, so that
at T ! 0 we have perfect transmission for I# with a con-
ductance G# !

e2
h .

In order to understand why G# !
e2
h , as T ! 0, we

present a scaling argument. We consider that the hopping
constant in the leads is t0 � VF and the tunneling matrix
element between the impurity and leads is � t0. The
value of the conductance G# is determined by the follow-
ing two scaling regions.

(I) 1 
 b 
 b0 	
�VF
~!! #

, b � es > 1, ~!!# � j"# � EFj= �h.
In this region ~!!#�b� 	 ~!!#b, 0�b� 	0b�2���, where 0��2,
t#�b� 	

0�b�
~!! "�b�

. For b
 b0, t#�b� increases.

(II) b > b0, t#�b� �
0�b�
~!! #�b�

, t#�b� 	 t#�b0��
b
b0
�1�� ���!

b!1
0.

If b 	 b0 	
�VF
~!! #

such that t#�b0� 	 t0 (t0 is the matrix
element in the leads), we have perfect transmission,
G# �

e2
h . The condition t#�b0� 	 t0 determines the range

of ~!!# � j"# � EFj= �h for which one has perfect transmis-
sion. We find that perfect transmission is achieved for
frequencies ~!!# which obey ~!!# 
 f��t0

���VF���1���g1=�2���.
Finally, we present a simple numerical estimate of the

important parameters. A crucial parameter is the coher-
116802-4
ence length L4�T� which must be larger than the length of
the wire L and the thermal length LT . Using diffusion
theory, we have L4�T� 	

���������
LT‘

p
> L � LT , where ‘ is the

mean free path. In GaAs we have VF � 105 m=sec, ‘ �
10�5 m, 0F � 10�7 m (the Fermi wavelength), and the
interaction parameter � � 1:2. We find that the condition
L4�T� > L � LT is satisfied for L � LT � 10�6 m. This
estimate is for temperatures T � 2 K. Using these pa-
rameters we find that in the resonance case � TTF

��1:6 	

�0FLT
��1:6 � 101:6, and for the off-resonance case � TTF

�0:4 	

�0FLT
�0:4 � 10�0:4. Thus the ratio of resonance to off-

resonance conductance is large, about 100.
In conclusion, we have shown that a wire consisting of

two Luttinger liquid leads coupled together through a
magnetic impurity can act as a spin polarizing structure.
The magnetic impurity breaks the spin symmetry of the
Luttinger liquid. This effect requires magnetic impurities
with different energy levels for the two spin orientations.
A physical realization could be a semiconductor device
structure with gate voltage-dependent electron density in
the leads coupled to a ferromagnetic quantum dot. The
gate voltage can change the Fermi energy of the leads so
that one spin orientation is resonant and the other off
resonant. Transport across the wire is then qualitatively
different for the resonance and off-resonance cases. For
the resonance case a long time correlation is induced by
the impurity. This correlation is reflected by a shift in the
Luttinger exponent �! ��� 1�. Consequently, the two
conductances G" and G# are different. At low tempera-
tures the off-resonant conductance goes to zero and the
resonant conductance approaches the quantum conduc-
tance limit. In this limit the wire is a perfect spin filter.
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