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Hall Effect in Nested Antiferromagnets near the Quantum Critical Point
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We investigate the behavior of the Hall coefficient in the case of antiferromagnetism driven by Fermi-
surface nesting, and find that the Hall coefficient should abruptly increase with the onset of magnetism,
as recently observed in vanadium doped chromium. This effect is due to the sudden removal of flat
portions of the Fermi surface upon magnetic ordering. Within this picture, the Hall coefficient should
scale as the square of the residual resistivity divided by the impurity concentration, which is consistent
with available data.
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quantitatively correct for zero-temperature properties,
thereby providing a solid foundation for further under-

tween the Hall coefficient and the longitudinal resistivity
across the QCP.
There has been recent interest, both experimentally
[1,2] and theoretically [3,4], in the physics of magnetic
quantum critical points (QCPs). Such QCPs occur when
the ordering temperature of a magnet has been driven to
zero continuously by some tuning parameter, such as
chemical doping. Much of the interest is due to strong
signatures of non-Fermi liquid behavior near QCPs, and
the difficulties of standard theories of itinerant magne-
tism in explaining such behavior. In the case of heavy
fermion metals, there is some indication that the QCP is
accompanied by localization of the f electrons [1–4].
This should result in a volume change of the Fermi
surface. A novel signature of nontrivial QCPs is a jump
in the Hall coefficient [3,4]. In the case of heavy fermi-
ons, results are still preliminary at this time [5]. Related
issues are also being discussed for high temperature
superconductors [6,7].

Recently, Yeh et al. [8] studied the Hall coefficient in
the simpler case of V-doped Cr. Upon doping with V, the
Néel temperature is rapidly suppressed to zero, leading to
a QCP at about 4% doping. The Hall coefficient decreases,
quite abruptly, by about a factor of 2 with doping into the
paramagnetic phase. Both the magnitude and the abrupt-
ness of this change are surprising, given that Cr is well
established to be a simple spin-density-wave magnet. One
of the characteristic features of Cr is that its Fermi
surfaces are nested. Indeed, magnetism in Cr is tradition-
ally understood as being driven by nesting.

In this paper, we show that the magnitude of the change
in the zero-temperature Hall coefficient across the mag-
netic QCP can be quantitatively accounted for by the
removal of the flat portions of the Fermi surface upon
magnetic ordering. From this picture, it follows that the
zero-temperature Hall coefficient should scale as the
square of the residual resistivity divided by the impurity
concentration, and we demonstrate that the available data
in V-doped Cr are consistent with such a relationship. Our
results establish that the Fermi-surface nesting picture is
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standing of the non-Fermi liquid behavior in this bench-
mark quantum critical metal.

The Hall conductivity is in general a component of a
tensor object. In the case of cubic materials, such as Cr,
only one component is relevant. In this paper, we will con-
fine our discussion to the level of Boltzmann approxima-
tion, which should be adequate for the zero-temperature
limit even when interactions are significant. Within this
approximation, the Hall coefficient is

RH � �xyz=�2
xx; (1)

where [9]
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Here, 1=� is the scattering rate, � the volume, and f the
Fermi distribution function.

The physical picture we propose is as follows. It is
known that parts of the Cr Fermi surface are flat and
nested, and the remaining parts are regular. The magnetic
ordering gaps out the flat surfaces.We note that Eq. (2) is a
weighted sum of various components of the inverse mass
tensor; the latter measures the curvature of the Fermi
surface. Therefore, the flat Fermi-surface sheets will
make a small contribution to �xyz even in the paramag-
netic state. Thus, upon magnetic ordering, �xyz is not
expected to change much. On the other hand,�xx involves
only components of the velocity and would contain con-
siderable contributions from the flat Fermi-surface sheets
in the paramagnetic phase. Removal of the flat Fermi
surfaces upon magnetic ordering should lead to a large
change in �xx. This will be amplified in the Hall coef-
ficient, since the square of �xx appears in Eq. (1). Such
reasoning makes clear a very general relationship be-
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At T � 0, the inverse of �xx is the residual resistivity,
�0. Therefore, we expect scaling between RH and �0. If
the tuning parameter (such as pressure) does not change
the elastic scattering, it follows that

RpmH
RafmH

�

�
�pm0
�afm0

�
2
; (4)

where the superscripts ‘‘pm’’ and ‘‘afm’’ refer to the
paramagnetic and antiferromagnetic phases, respectively.
When the transition is induced by doping, the elastic
scattering is also being changed, presumably in a linear
fashion. For impurities that are intermediate between
Born and unitarity limits, we find that

RpmH
RafmH

�

�
d�pm0 =dx

d�afm0 =dx

�
2
: (5)

From data available in the literature [10], the concentra-
tion dependence of �0 goes as x� x0, where x0 represents
impurities already present in the stochiometric material.
We can check the validity of Eq. (5) by comparing
�x� x0�=�0 with the Hall number, R�1

H . As seen in
Fig. 1, the correlation is quite good. The discrepancy is
mainly due to the fact that the resistivity was measured on
a sample with critical point at about 4% doping, whereas
the Hall data were taken on samples with the critical
doping of 3:5%. It would be important to test Eq. (5) in
greater detail by taking Hall and resistivity data on the
same samples. We also note that Eq. (4) is consistent with
the pressure data [11].
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FIG. 1. Doping dependence of the Hall number (R�1
H , carriers

per unit cell) [8] and of the inverse square of the residual
resistivity (�0, ��cm) [10]. �0 is divided by the effective
impurity concentration, x� x0, where x is the doping, and x0 �
0:59% the impurity concentration at stochiometry, determined
from a linear fit of �0 at low doping. The discrepancy between
the plots is largely due to the different critical concentrations of
the two sample sets (3:5% for the Hall samples, 4% for the
resistivity samples). The experimental RH point at 5% doping
actually corresponds to 10% doping, and is shown simply to
illustrate the approximate constancy of RH in the paramagnetic
phase.
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We now turn to quantitative considerations of the Hall
coefficient itself. To this effect, we have performed band
calculations within the local density approximation for
Cr, using the linear muffin tin orbital method. After self-
consistent convergence, eigenvalues were generated on a
506 k point grid in the irreducible wedge (1=48th) of the
bcc Brillouin zone. These eigenvalues were then interpo-
lated using a 910 function Fourier series (spline fit). The
resulting Fermi surface is shown in Fig. 2. It consists of
four parts, a � centered electron octahedron, an H cen-
tered hole octahedron, �-H centered electron balls,
and N centered hole ellipsoids. As is well known, the
two octahedron surfaces match up when translated by the
magnetic Q vector. The ‘‘gapping out’’ of these two sur-
faces by the magnetic ordering has been recently ob-
served by photoemission [12].

We show a Fermi-surface decomposition of Eqs. (1)–
(3) in Table I. We see that, although the two flat surfaces
make up 40% of the density of states, and 52% of �xx,
they only make up 22% of �xyz. The total Hall number
corresponds to 0.54 (in units of carrier concentration),
somewhat larger than the paramagnetic value of 0.37
found for 10% V doping [8]. Actually, the theoretical
value decreases with V doping (simulated by a rigid
band adjustment of the Fermi energy), and has a value
of 0.47 for 10% hole doping.

If the two octahedron surfaces were completely flat,
they would be immediately removed by magnetic order-
ing. The Hall number would then jump from 0.54 to 0.16.
(The latter value is identical to experimental values in the
magnetic phase [8].) This can be seen from Fig. 3. In
Fig. 3(a), we show a schematic electronic dispersion cor-
responding to the electron octahedron band of Cr. Also
shown in the schematic is the dispersion of the hole
ΓH

PN N

N

FIG. 2. Fermi surface of Cr plotted in the faces of the
irreducible wedge of the bcc zone. In units of �=a, the sym-
metry points correspond to � (0,0,0), H (2,0,0), N (1,1,0), and
P (1,1,1). The Fermi surface consists of a � centered electron
octahedron, an H centered hole octahedron, N centered hole
ellipsoids, and �-H centered electron balls.
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TABLE I. Decomposition of the transport integrals for un-
doped Cr in the paramagnetic phase. DOS is the density of
states; �xx and �xyz are defined in Eqs. (1)–(3). N-ell are the N
centered hole ellipsoids, H-octa the H centered hole octahe-
dron, �-octa the � centered electron octahedron, and �-ball the
�-H centered electron balls. Flat is the sum of the two octahe-
dra, nonflat the sum of the rest. Values listed are the fraction of
the total. The resulting Hall number is 0.54, which would be
0.16 if the flat surfaces are eliminated.

N-ell H-octa �-octa �-ball Flat Nonflat

DOS 0.12 0.19 0.21 0.48 0.40 0.60
�xyz 1.06 0.36 �0:14 �0:29 0.22 0.78
�xx 0.27 0.36 0.16 0.21 0.52 0.48
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octahedron band translated by the magnetic wave vector
Q. The Q vector needed for the crossing point to be
degenerate with the Fermi energy will depend on doping
(the wave vector is predicted to be commensurate for
electron doping, and increasingly incommensurate with
hole doping, as observed experimentally [13]). Upon
magnetic ordering, an energy gap will open up between
these two bands. If the Fermi energy lies inside the gap, as
shown in Fig. 3(b), then the contribution of the two bands
to the transport integral is removed. For the perfectly flat
case, this happens even if the energy gap goes to zero, as
in Fig. 3(c). That is, in this case, a discontinuity in the
Hall number is predicted at the QCP.

In the real band structure, the Fermi surface is not
perfectly flat, and so the crossing point shown in Fig. 3
disperses as a function of Fermi-surface position. To
illustrate this, we have performed numerical calculations
of the Hall coefficient versus doping. The most natural
way to do this is by restriction to the magnetic Brillouin
zone. However, two problems arise. First, energy gaps
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FIG. 3. Schematic of energy bands in Cr. (a) Paramagnetic
phase —band 1 represents the electron octahedron, band 2 the
hole octahedron translated by the magnetic wave vector, Q. (b)
Antiferromagnetic phase — the two bands mix, forming new
energy bands 10 and 20 with an energy gap. (c) Limit of (b) as
the energy gap is taken to zero. Note the different band index-
ing in (c) as compared to (a). The implication of this for
transport integrals is discussed in the text.
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will always be present in such calculations because of
the finite grid in k space (this is easily understood from
Fig. 3). Second, because of the incommensurability, the
zone can be ill defined. Instead, we assume a 2 by 2
secular matrix whose diagonal elements are the eigenval-
ues of the H centered octrahedron (translated by Q), and
the electron octahedron, and whose off-diagonal ele-
ments are some constant, � [14]. Note that in this ap-
proximation, the �-H centered electron balls and N
centered hole ellipsoids are unaffected by magnetic order-
ing. The paramagnetic electron structure is assumed to be
that at 4% Vdoping, so that the only doping dependence is
given by the magnetism. The latter is represented by a Q
vector of 0.909 (2�=a,0,0), obtained from the maximum
in the susceptibility gotten from the paramagnetic band
eigenvalues (this value agrees with experiment [13]). The
gap � (milli-Rydberg) is assumed [13] to vary as
4:9–1:3x (where x is the hole doping in percent). The
results are averaged over the three different Q domains.

In Fig. 4, we plot the calculated Hall number as a
function of x. Note the striking similarity to Fig. 1, in
particular, the abrupt drop in the Hall number near the
QCP [we cannot calculate too close to the QCP because
of numerical problems which can be understood from
Fig. 3(c)]. Although the paramagnetic value is somewhat
high, the value in the magnetic phase is quite close to
experiment [8].

The two octahedra are quite flat. However, on a finer
scale, they have different curvatures, leading to a con-
tinuous change of the Hall number near the QCP. This
change can be expanded in small gap �. The coefficients
of the expansion are model dependent, but the leading
power in � is universal, and can be easily derived for the
spherical case using Eqs. (1)–(3). For unequal sized
spheres which intersect (appropriate for hole doped Cr),
��xx, ��xyz � � for any direction of current, J, and field,
B, from which �RH � �. For touching spheres, though,
��xx �� for J k Q, ��xx ��2 for J ? Q, ��xyz � �2

for B k Q, and ��xyz � � for B ? Q, from which �RH �
� for B ? Q, J ? B and �RH � �2 for B k Q, J ? Q.
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FIG. 4. Calculated Hall number as a function of hole doping.
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(With domain averaging, all changes would go as ��.)
This touching case should not be relevant, though, since it
corresponds to where the susceptibility has an inflection
point as opposed to a maximum [15]. Our results for �xx
agree with previous results in the case of equal sized
spheres [16]. (In the 2D case, similar conclusions for RH
have been reached in Ref. [6].) Since [13] ��Mafm �
xc � x (where Mafm is the antiferromagnetic order pa-
rameter) near the critical concentration xc, �RH �
xc � x. (Mean field theory would predict ��

��������������
xc � x

p
,

in which case �RH �
��������������
xc � x

p
.) We note that the numeri-

cal results of Fig. 4 are consistent with a much more rapid
variation [�RH � �xc � x�1=4], indicating a significant
deviation from the spherical model.

Although the explanation we give for the behavior of
the Hall coefficient seems conventional, the result is
consistent with the more exotic physics discussed in
Refs. [3,4]. In both cases, the Hall coefficient jumps
because of the expectation that the Fermi-surface vol-
ume changes abruptly at the QCP. In the current case,
this is due to nesting. Presumably, in the heavy fer-
mion case, it is due to disconnection of the f electrons
from the Fermi surface. Still, the net result for the zero-
temperature Hall coefficient is the same. Since entire
regions of the Fermi surface are involved in the phase
transition, the nesting QCP differs significantly from
the standard SDW scenario, where only hot lines of the
Fermi surface are relevant. As is now well appreciated,
hot lines should not be enough to destabilize the Fermi
liquid [17], but if entire regions of the Fermi surface are
involved (such as with nesting), the physics changes
considerably.

In fact, nesting may be playing a larger role in QCPs
than has been appreciated. A recent example is the bilayer
ruthenate, Sr3Ru2O7. This metal exhibits a metamagnetic
QCP accompanied by non-Fermi liquid behavior [18].
Recent neutron scattering data find two sets of incom-
mensurate spots, which can be related to Fermi-surface
nesting [19]. So, it is quite possible that nesting is playing
a key role in this system, and perhaps in heavy fermion
metals as well.

In conclusion, we have demonstrated that the abrupt
change in the zero-temperature Hall coefficient in Cr
with V doping as observed by Yeh et al. can be understood
as a consequence of nesting driven magnetism. We are
able to quantitatively explain the T � 0 experimental
data by use of band theoretical results, and have sug-
gested a correlation between the Hall number and the
residual resistivity. The quantitative success of the
Fermi-surface nesting picture should provide a solid
foundation for the eventual understanding of the finite
temperature properties of V-doped Cr, which we do not
treat in the current paper. More generally, V-doped Cr
represents the first known example of a nesting driven
QCP, and further studies of this system can shed consid-
116601-4
erable new light on the more exotic QCPs, such as those
seen in heavy fermion metals.
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