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Evidence for a Mott-Hubbard Transition in a Two-Dimensional 3He Fluid Monolayer
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The heat capacity and magnetization of a fluid 3He monolayer adsorbed on graphite plated with a
bilayer of HD have been measured in the temperature range 1–60 mK. Approaching the density at
which the monolayer solidifies into a
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commensurate solid, we observe an apparent divergence
of the effective mass and magnetization corresponding to a T � 0 Mott-Hubbard transition between a
2D Fermi liquid and a magnetically disordered solid. The observations are consistent with the
Brinkman-Rice-Anderson-Vollhardt scenario for a metal-insulator transition. We observe a leading
order T2 correction to the linear term in heat capacity.
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provide an example of a MI transition occurring via the with Fa ’ �3=4, close to the value observed in bulk
The study of bulk liquid 3He has played a central role
in the development of theories of interacting Fermi sys-
tems [1]. The interatomic potential consists of a strong
hard core repulsion and a weakly attractive tail. At low
mK temperatures these interactions can be tuned by vary-
ing the pressure from zero to the melting pressure
(34.4 bars), reducing the molar volume by approximately
30%. At sufficiently low temperatures liquid 3He is de-
scribed by Landau Fermi-liquid theory. Over this pres-
sure range the effective mass ratio m�=m increases from
2.80 to 5.85. The Landau parameters which are introduced
phenomenologically to characterize the quasiparticle
interactions have markedly different pressure depen-
dences. Fs

0 which renormalizes the compressibility
increases from 9.3 to 88, but Fa

0 which determines a
ferromagnetic spin-spin interaction merely varies from
�0:7 to �0:75.

There is continuing interest in developing microscopic
models to describe this behavior and strongly correlated
Fermi systems in general. Appealing model systems are
provided by two-dimensional fluid monolayers of 3He
adsorbed on atomically flat substrates. The absence of a
liquid-gas transition in 2D 3He allows the interatomic
spacing in the fluid to be varied over a wide range.
Thereby correlations can be tuned from weak to strong,
simply by varying the surface density of 3He atoms n �
N=A. In this Letter we discuss a simple 3He monolayer,
subjected to a crystalline substrate potential, where it is
found that the 3He solidifies at the appropriate density
into a structure commensurate with this potential. The
focus here is the strong correlations in a 2D fluid which
develop as its density approaches that of this commensu-
rate solid.We argue that this provides a novel example of a
metal-insulator transition in 2D, in which we can track
the associated collapse of the Fermi-liquid ground state
through measurements to well below the degeneracy
temperature. Metal-insulator (MI) transitions continue
to be the subject of widespread interest [2–4], as well
as some controversy [5]. The present system seems to
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Brinkman-Rice-Anderson-Vollhardt scenario [6]. In the
simplest model, one considers half-filling: one particle
per site, and magnetic interactions are neglected. The MI
transition can be regarded as a quantum phase transition
arising from competition between tunneling motion,
tending to reduce zero point kinetic energy, and on-site
repulsion U. This model was applied by Anderson and
Brinkman [7] to bulk liquid 3He, and developed into the
‘‘almost localized fermion’’ model [8]. This involves
introducing a fictitious lattice; the model has also been
generalized away from half-filling [9]. The key results, at
half-filling, are that a MI transition occurs as U ! Uc,
while m�=m ! 1, Fa

0 ! �3=4. The large increase in
compressibility with pressure is also explained [8,10].
Recently results on the polarization dependence of the
specific heat in bulk liquid 3He have been discussed in the
context of such models [11].

The advantages of our experimental system are that it
is truly two dimensional, with no interlayer coupling, and
it has simple short-range interactions and negligible
spin-orbit coupling. A particularly interesting feature
is that the solid is highly magnetically frustrated and it
is believed to have a quantum spin-liquid ground state
[12]. The second layer of 3He adsorbed on bare graphite
has been extensively investigated. The first layer forms a
compressed 2D paramagnetic solid of density 11:2 nm�2,
as determined by neutron scattering [13]. The first heat
capacity measurements of the second layer fluid were well
described by the form c � 
� �T [14], where � �
�k2BAm

�=3 �h2. The 
 term is attributed to residual sub-
strate heterogeneity [14,15], and A is the area of the
substrate. The effective mass ratio m�=m of the second
layer fluid was found to vary from unity at the lowest
densities to 4.5 at 4:4 nm�2. Measurements of the mag-
netization found enhancements relative to that of an ideal
Fermi gas up to 25 at a density of 5:4 nm�2 [16]. Since
M=M0 � m�=m	1� Fa

0 
, these measurements together
allow a determination of Fa

0 . Although the effective
mass increases with density, Fa

0 appeared to saturate

0
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liquid, consistent with the picture of liquid 3He as an
‘‘almost localized’’ system.

Heat capacity measurements [14] were the first to show
that the second layer solidified at a density of 6:4 nm�2. It
was proposed that this occurred by the formation of a
triangular lattice in
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commensuration with the
first layer [17], and such a structure has subsequently been
found in path integral Monte Carlo simulations [18].
Later measurements of the magnetization suggested that
a ‘‘highly correlated regime’’ existed in the fluid near
solidification, which began at 5:8 nm�2 [19,20].

In this Letter we report measurements of the heat
capacity and nuclear magnetization of a fluid 3He mono-
layer adsorbed on graphite plated with a bilayer of HD, in
which we concentrate on the region close to solidification
[21]. Since the density of each HD layer is 9:1 nm�2 the
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solid now forms at 5:2 nm�2 [22]. This is a
quantum solid of remarkably low density, with interpar-
ticle spacing greater than in bulk liquid 3He at zero
pressure. At fluid coverages approaching this commensu-
rate density we observe a rapid increase in the quasipar-
ticle effective mass that we interpret as critical behavior
approaching a Mott-Hubbard transition. The magnetiza-
tion diverges in a similar way indicative of Fa

0 tending to
a constant. The measurements were performed using an
experimental cell that is described in more detail else-
where [22]. The procedures for preplating the graphite
surface with a bilayer of HD are those followed in pre-
vious work. The heat capacity data for coverages n �
5:0 nm�2 are shown in Fig. 1. At sufficiently low tem-
peratures the data are well described by c � 
� �T �
�2DT

2. The T2 term is the leading order correction pre-
dicted in 2D, as discussed later. At each density the
effective mass ratio is inferred from fits to the data of
this form, Fig. 2 [23]. It increases from close to unity at
FIG. 1. Heat capacity at 3He coverages: 1.00 (�), 2.00 (�),
3.00 (�), 4.00 (�), 4.40 (�), 4.70 (4), 4.80 (�) , 4.90 (�),
4.95 (�), and 5:00 nm�2 (5).
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the lowest density to around 13 at n3 � 5:0 nm�2, sig-
nificantly larger than the effective mass in bulk liquid at
the melting pressure.

In earlier continuous wave NMR experiments per-
formed in the same cell, we determined the magnetiza-
tion enhancement relative to an ideal Fermi gas M=M0.
Assuming the validity of the almost localized fermion
model (essentially that Fa

0 ! �3=4
, we can infer values
of m�=m from the magnetization data [24]. These are also
plotted in Fig. 2, and are clearly in agreement with the
direct determination from the heat capacity data [25].
Within the lattice gas picture, our experimental system
is actually more closely modeled by the filling controlled
metal-insulator transition. Note that in the adsorbed film
the 3He is exposed to the crystalline potential of the HD
substrate, but ‘‘half-filling’’ is never achieved because of
the short-range repulsion between 3He atoms. Rather, it is
natural to take the density of the lattice as nc, that of the
commensurate solid. Then the ‘‘doping’’ � � 	1� n=nc
:
It is then expected that m�=m
 1=� [9]. We fit the appar-
ent divergence of the effective mass, over the whole
density range, to the empirical form m�=m �
	1� n=nc


��, and we find for the critical density nc �
5:1 nm�2, close to the value of 5:2 nm�2 for the
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solid. The precision does not allow a reliable determina-
tion of the critical exponent. The solid is stabilized at the
commensurate density by the combined effects of the
periodic potential due to the HD substrate, the short-
range hard core repulsive energy between 3He atoms,
and their zero point energy. Thus correlation effects are
crucial to its existence, and precursor behavior in the 2D
fluid suggestive of the approach towards a critical point
lead us to identify this transition as Mott-Hubbard local-
ization. However, it appears that solidification may be
FIG. 2. Effective mass ratio as a function of 3He fluid density
inferred from heat capacity (�), magnetization (4), showing
apparent divergence. Solid line is fit to data (see text).
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weakly first order; heat capacity isotherms are consistent
with a narrow coexistence region between 5.1 and
5:4 nm�2. The advantage of the HD substrate is that the
critical density can be approached more closely than in
the second layer on bare graphite.

In passing, we note that similar behavior at a MI tran-
sition has been seen in the 3D compound Sr1�xLaxTiO3

[26] as x ! 1. The common feature of the insulating
phase in the two cases is magnetic frustration, particu-
larly pronounced in the case of 2D solid 3He, which is
frustrated both geometrically, due to the triangular lat-
tice, and because of competing multiple spin exchange
interactions [12].

In the present case, our measurements extend into the
Fermi-liquid regime even when the density is tuned close
to the Mott transition. In this regime we find clear evi-
dence that to leading order the fluid heat capacity is given
by c � �T � �2DT

2, Fig. 3. The unusual T2 term has been
found theoretically by a number of authors [27–29], and
this is the first clear experimental confirmation of it. It
should be compared to bulk 3He, where the form c �
�T � �3DT3 ln	T=T0
 is found both experimentally and
theoretically [30,31]. Here �3D has been calculated within
Fermi-liquid theory in terms of the Landau parameters
and has a magnitude consistent with that expected for
spin fluctuations. For the 2D case, both long range qua-
siparticle interactions and collective modes are shown to
contribute to the T2 correction [27]; elsewhere the fact
that the spin fluctuation spectrum in 2D is relatively flat,
with no pronounced low frequency peak, is emphasized
and a T2 correction is calculated numerically [28]. A
variation of 3 orders of magnitude is observed in the
measured coefficient �2D, reflecting the wide range of
effective mass ratio, which in this system varies over
more than an order of magnitude. Empirically it is natural
FIG. 3. Fluid heat capacity, obtained by subtracting ‘‘
 term’’
from total 3He heat capacity, divided by temperature, as a
function of T, to illustrate T2 correction.
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to write the heat capacity as an expansion in T=T�
F,

where T�
F � TF=	m

�=m
; here TF � � �h2N=kBmA is the
Fermi temperature of an ideal Fermi gas. Then c �
1
3�

2NkB�
T
T�
F
� � T2

T�2
F
�, and � is a dimensionless parameter.

Figure 4 shows that �2DN varies as 	m�=m
3; hence �

	m�=m
. Introducing a characteristic temperature T0 �
T�
F=�, which we can identify with the degeneracy tem-

perature (coherence temperature) [3,4] below which the
Fermi-liquid state is well defined, this result corresponds
to T0 
 T�2

F 
 ��2 
 	m�=m
�2. Thus the divergence of
the effective mass implies a rapid collapse of Fermi-liquid
behavior as the Mott transition is approached. To further
explore the systematics of this collapse we plot in Fig. 5,
for selected coverages, a reduced heat capacity coefficient
versus reduced temperature T=T�

F, where T�
F is calculated

from the known density and measured values of m�=m. It
can be seen that at 5 nm�2, the plateau in c=T develops
only below 10 mK, corresponding to T=T�

F 
 0:05. In
terms of dynamical mean field theory [4], this corre-
sponds to the disappearance of the quasiparticle peak in
the density of states at the Fermi energy with increasing
temperature above the degeneracy temperature. The data
necessarily collapse at the lowest temperatures. However,
it is clear that the reduced temperature range of the
plateau shrinks as n ! nc; in other words, T0 ! 0 faster
than T�

F ! 0, consistent with the analysis from �2D.
This behavior is found in several theoretical models.

According to scaling proposed by Imada [32], m�=m

�	d�z
=d, while T0 
 �d=z. Thus the experimental result for
the relative scaling of T0 and m� is consistent with a
dynamical critical exponent z � 4, for dimensionality
d � 2. In this case m�=m
 1=�. In contrast, dynamical
mean field theory finds T0 
 �3=2 [33]. In the coverage
range from 4.8 to 5:0 nm�2, in the regime of strongest
correlations close to the Mott transition, for which the
FIG. 4. �2Dn vs m�=m, where �2D is a coefficient of the T2

term and n is the number of 3He atoms per unit area.
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FIG. 5. Reduced fluid heat capacity as a function of reduced
temperature, showing emergence of Fermi liquid at low tem-
peratures: 3.00 (�), 4.80 (�), 4.90 (�), 4.95 (�), and
5:00 nm�2 (5). Solid line, a fit to numerically calculated
values of [28], with Fa

0 � �0:78.
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temperature range of measurements, shown in Fig. 1,
extends well beyond the Fermi-liquid regime, we find a
temperature dependence of the heat capacity consistent
with the form T lnT, as can be seen in Fig. 5. Such a term
has been found in calculations of the spin fluctuation
contribution to the heat capacity to emerge from a T2

term above some characteristic temperature 
0:1T�
F [28].

By studying a 2D 3He fluid film adsorbed on a crys-
talline substrate we find evidence for a Mott metal-
insulator transition, between a 2D Fermi liquid and a
spin disordered solid, which follows the Brinkman-
Rice-Anderson-Vollhardt scenario, to be compared with
the classic case of bulk 3He. It suggests that doping a
magnetically frustrated Mott insulator results in a Fermi
liquid. It would also be desirable to make a detailed
comparison of a Fermi-liquid theory calculation of �2D

with the present data.
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