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Thermally Excited Modes in a Pure Electron Plasma
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Thermally excited plasma modes are observed in near-thermal-equilibrium pure electron plasmas
over a temperature range of 0.05 < kT <5 eV. The measured thermal emission spectra together with a
plasma-antenna coupling calibration uniquely determine the temperature. This calibration is obtained
from the spectra themselves when absorption of the receiver-generated noise is significant, or from
kinetic theory. This nondestructive temperature diagnostic agrees well with standard diagnostics and
may be useful for expensive species such as antimatter.
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Unneutralized plasmas are unique in that they can be
trapped in a rotating near-thermal-equilibrium state by
static electric and magnetic fields. Steady-state confine-
ment of N = 10°-10° electrons, ions, or antimatter par-
ticles [1,2] is routinely used in plasma experiments,
atomic physics [3], and spectroscopy [4]. The thermal
equilibrium characteristics become most evident with
the formation of Coulomb crystals [5] when pure ion
plasmas are cooled to the liquid and solid regimes at
sub-Kelvin temperatures, but the higher temperature
plasma regime studied here is also well described by
near-equilibrium statistical mechanics [6].

These stable near-thermal-equilibrium plasmas exhibit
fluctuating electric fields which are excited and damped
by the random motions of the particles. Weakly damped
plasma waves are the normal modes of the system; in
traps with finite length and radius, these appear as dis-
crete Trivelpiece-Gould (TG) standing mode frequencies
[7]. In an isolated equilibrium plasma, the modes would
have an average electrostatic potential energy of 1 kT per
mode; here, the mode coupling to the receiver electronics
can be comparable to the coupling to the (rotating) ther-
mal equilibrium plasma.

Somewhat simpler center-of-mass “trap modes” are
commonly observed in the single-particle regime with
highly tuned resonant circuits in hyperbolic traps [8],
diagnosing the number of particles, but not their tem-
perature. At higher frequencies, thermal excitation of
cyclotron modes is readily observed in warm non-neutral
[9] and hot fusion plasmas [10]. In space plasmas, thermal
noise diagnostics [11] are substantially different because
of the lack of boundaries.

In this Letter, the spectrum of thermally excited TG
standing modes is measured in pure electron plasmas over
a temperature range of 0.05 < k7T, <35 eV, using a room-
temperature receiver. The received spectrum for each
mode is nominally a Lorentzian at frequency w,, with
width vy,,, superimposed on the receiver-generated noise
modified by plasma absorption.
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PACS numbers: 52.25.Gj, 52.25.Kn, 52.27.Jt, 52.35.Fp

By Nyquist’s theorem, the thermal noise driving a
mode is proportional to k7, and proportional to the
real part of the mode/antenna impedance Z, [9].
The impedance Z,, can be obtained directly from the
received spectra when the receiver impedance and noise
are significant, or it can be calculated from a kinetic
theory of random test particles incorporating the plas-
ma dielectric. Overall, the technique allows a rapid
nondestructive diagnostic of the plasma temperature
with *£25% accuracy; with a low temperature ampli-
fier, it would be applicable to diagnosing the posi-
trons down to Kelvin temperatures in traps to create
antihydrogen [2].

Thermal emission spectra were obtained from pure
electron plasmas contained in two similar Penning-
Malmberg traps, “IV” and “EV,” differing mainly in
plasma diameter and magnetic field strength. The IV
trap consists of a series of hollow conducting cylinders
of radius r,, = 2.86 cm contained in ultrahigh vacuum at
P =~ 10710 torr with a uniform axial magnetic field of
B = 30 kG [Fig. 1(a)]. Electrons are injected from a hot
tungsten filament and contained axially by voltages V. =
—200 V on end electrodes. Typical plasmas have N =~ 10°
electrons in a column length L, = 41 cm, with a plasma
radius r, =~ 0.2 cm and a central density n, =~ 107 cm 3.
(For EV, typical parameters are B = 0.375 kG, r, =
1.7 cm, r,, = 3.8 cm, and L, = 24 cm.)

The plasma density profile n(r) and the temperature T,
are obtained by dumping the plasma axially and measur-
ing the charge and energy of the escaping particles [12].
The EV plasmas expand radially towards the wall with
a characteristic “‘mobility” time of 7,, = 100 sec, so
the electrons are repetitively injected, diagnosed,
and dumped. On IV, a weak “rotating wall” (RW) drive
at frw ~ 0.5 MHz provides steady-state confinement
of the electron column [13]. To control the temperature,
we apply auxiliary “wiggle” heating by modulating
one containment voltage V. at a frequency f;, =
0.8-1.0 MHz.
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FIG. 1. Schematic diagram of the cylindrical Penning-
Malmberg trap with (a) the wave reception electronics and
(b) the thermal emission equivalent circuit.

The azimuthally symmetric my = 0 standing plasma
wave resonances used here are readily identified with a
standard transmission experiment, with rf excitation
and reception on separate wall cylinders. Figure 2(a)
shows the spectrum with wall excitation of V., =
—80 dBm (22 wV) at frequencies f = 0.01-10 MHz.
The Trivelpiece-Gould mode frequencies can be approxi-
mated as [7]
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scaling with density as the plasma frequency w, = 2 -
28 MHz (n/107 cm™3)"/2, reduced by the fractional fill
ratio r,/r,, and by the wall shielding ratio r, k,. Resonant
standing modes occur only at discrete axial wave num-
bers k., = mm, /L, with finite-length corrections Lo =
L, + O(R,) [14] and m, an integer. Here, we consider
only the lowest radial mode number m, = 1, since higher
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FIG. 2. (a) Spectrumofmgy =0,m, = 1,2, ..., 5 Trivelpiece-

Gould modes. (a) driven; (b) no drive.
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m, couple only weakly to wall antennas. Thermal fre-
quency shifts and Landau damping depend on the ratio of
vy/D, where vy = w,,/k, and v = (kT,/m)"/>.

The modes are nominally linear, with density pertur-
bations of &n/n =< 10~* driven by V.. = —80 dBm.
However, Landau damping of the mode is generally non-
linear even down to near-thermal levels, due to wave-
particle trapping near velocity v, [15]. The apparent
lesser sensitivity for m, = 2 is due to the location and
length (L, = 11.7 cm) of the cylindrical detection an-
tenna. The peak labeled RW is the rotating wall drive;
similar spectra are obtained with the drive off.

Small peaks representing thermally excited modes are
still visible in Fig. 2(b) when the transmitter electrode is
grounded (Vg = 0). These peaks have amplitudes of
—124 dBm with a bandwidth BW = 3 kHz, representing
voltage fluctuations on the electrode with spectral inten-
sity V,,/+/df = 2.6 nV/~/Hz.

Figure 3 shows received spectra of the thermally ex-
cited m, = 1 mode for four different plasma tempera-
tures. The mode frequency w,, increases slightly with
temperature, as expected from Eq. (1). The width of the
spectral peak represents mode damping, and this width
increases substantially as Landau damping becomes sig-
nificant for kTp = 0.5 eV, ie., for vd,/f; =< 5. At high
temperatures, the spectrum is broad, but weak; roughly
speaking, the “area” [dfV2, corrected for the load im-
pedance, will be proportional to kT,.

Figure 1(b) shows a circuit modeling the reception of
thermal noise from the plasma. The thermal fluctuation
voltage V,, flows through a mode/antenna impedance
Z,(w), and through a receiver load impedance Z;(w)
with its inevitable noise V,. Near a mode at frequency
w,, with intrinsic damping y,,, the mode admittance Z,,!
is given by a simple pole, as
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FIG. 3. Spectra of the thermally excited my =0, m, = 1,
mode for different plasma temperatures; the solid lines are
fits to Eq. (6).
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The geometric coupling between the plasma mode and
the receiving electrode is represented by the capacitance
G = 0.4 pF. The mode impedance on resonance is purely
real, with magnitude

Y

_m_
Goy,’
where ZR® = Re{Z} and Z™ = Im{Z}. The known load
resistance R, and capacitance C, give a load impedance

Ze=R;'+iwC)™!, 4)

which is essentially constant over the mode resonance;
for 1V, 750 ) /440 pF gives Z¢(w,,) = (40 — 170i) ().

R, =Zy(0,) = 3

Nyquist’s theorem says that the spectral density of the
square of the noise voltage is proportional to k7 times the
real part of the impedance, for both the mode and the load
noise sources. A voltage-divider fraction |Z,/(Z,, + Z,)|
of the mode voltage V,, will be measured on the antenna
as V, together with an analogous fraction of the (uncor-
related) load noise, giving

Va(f)
daf

Zy
+7Z

m

Z,+*Z

2
= 4kT,ZR¢ +4KT ZRe

Zn
&)

| Using Egs. (2) and (4), Eq. (5) can be explicitly written as

V2 7 2 2
a(f) =4kTpRm | €| s Yot —
df |Rm + Z€ | Yiot + ((1) - wm)
where
Yot = Ym + Ye = (1 + Z(l}e/Rm)’Ym’ (7)
Sw, =w, — v, =7Z"w2G.

The first term of Eq. (6) describes the Lorentzian
plasma emission spectrum centered at !, of width 7y,
with amplitude proportional to k7, R,,. Thus, this emis-
sion spectrum alone does not determine kT, unless prior
knowledge of the coupling coefficient G allows R,, to be
obtained from Eq. (3). The second term describes a uni-
form noise background, plus a “dip and peak” from the
(w — w},) term, plus a Lorentzian absorption, with all
three components proportional to kTgZ?e. The differing
spectral shapes of the two terms allow noise generated by
T, to be distinguished from that generated by 7. Indeed,
this load noise spectrum determines 7, (since ZeRe is
known) and it determines G if this spectral shape is
discernible; for this reason, adding noise at the receiver
can improve this determination of G.

Figure 4 shows measured emission spectra from the
EV apparatus with (upper, heavy lines) and without
(lower, light lines) added receiver “‘noise’; both are ac-
curately described by Eq. (6) (solid lines). The quiet
receiver gives a low background, determining k7T, =
0.15 eV, but the frequency variation of the second term
of Eq. (6) (short dashes) is smaller than the data scatter,
so G is not accurately determined. The upper spectrum
resulted from injecting white noise current at the receiver
electrode, with spectral density around w,, correspond-
ing to a resistor Z¥° at kT, = 6.9 eV. Fitting Eq. (6) to the
data then gives essentially the same Lorentzian plasma
emission (shifted left by 5 kHz due to shot-to-shot plasma
variations), and the second term of Eq. (6) (upper short
dashes) determines G = 0.40 pF accurately. The load
noise is reduced (“‘shorted’) by the mode impedance on
the left-hand side of the Lorentzian peak.

Thus, the plasma temperature T, is uniquely deter-
mined by the received spectrum alone for regimes where
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| the load-generated noise ‘““filtered” by the plasma reso-
nance is significant compared to the plasma emission; this
was the case only for the k7, = 0.03 eV data of Fig. 3. In
practice, the most effective technique is to add noise with
T, =~ T,,sothat w,, ¥, T,, T¢, and G are all determined
directly from each set of spectral data. This technique
essentially combines a reflection/absorption measurement
to determine G with the plasma emission measurement.
Alternately, one can calculate the coupling coefficient
G analytically using kinetic theory. Analysis of a uniform
density collisionless plasma of radius r, with z-periodic
boundaries of period L, reproduces the impedance
of Eq. (2) for frequencies near a plasma resonance. In

the limit of 7'— 0, assuming that A; < r, and that
k.r, < 1, we find that
4meyL , F?,
g . ®)

1+ x2 lnz(rw/rp) ’

where  F,, = (m_m) " [sin(m,7z,/L) — sin(m_ 7z, /L)]
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FIG. 4. Spectra of the thermally excited mode for kT, =
1.8 eV (bottom); and with noise added to the receiver (top).
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with z; and z, the left and right ends of the antenna
cylinder. Here, x is a dimensionless quantity that satisfies
the equation xJ; (x) In(r,,/r,) = Jo(x) and is related to the
frequency of the plasma mode by x = k.r,(w3/w?—
1)!/2. For r,/r, » 1, x = /2/In(r,,/r,), which implies

G=L,F2/[1+2In(r,/r,)]. For a typical EV plasma,
this gives G = 0.42 pF, whereas we measure 0.40 = G =
0.73 as the plasma temperature varies over 3.5 = kT, =
0.7 eV.

A more complete kinetic analysis of a Maxwellian
distribution of “fully dressed” test particles includ-
ing the plasma dielectric properties [16] reproduces
the Nyquist theorem of Eq. (5) and also gives the fluctua-
tion spectrum off resonance. For example, the m, =1
spatial Fourier component has total (frequency-
integrated) charge fluctuations (SN)? = (8¢q)*/e* ~
O(0.1)(Ap/r,)*N for Ap < r,, showing a strong reduc-
tion below the (§N)? o N fluctuations expected for fully
uncorrelated particles [17].

Figure 5 displays the inferred plasma temperatures
Tj’;miS obtained from emission spectra and reflection/ab-
sorption measurements, versus the plasma temperatures
T9"™ measured by dumping the plasma. Data were taken
for plasmas with several “‘geometric” parameters (n, r,
L,) on EV (circles) and IV (triangles), with varied
amounts of plasma heating. Most of the values of T5™*
were obtained from four-parameter fits to the emission
spectra, together with a separate absorption/reflection
determination of G; measurements with a noisy load
combine both measurements, and a single five-parameter
fit gives the same results.

It is important to note that the load resistance Zy°
contributes to the observed mode damping 7y, on an
equal footing with the internal (Landau) damping repre-
sented by R,,, as shown in Eq. (7). Thus, the external
dissipation from Z§°® =40 Q induces a baseline mode
damping of y,/w,, = 6 X 1074,

In the two-coupling model of Eq. (5), the plasma mode
is coupled to the thermal plasma [6] at rate vy,,, and to the
load resistor at rate 7y, so the time-averaged mode energy
W,, evolves as W,, = v, (kT, = W,,) + y((kT;, — W,,),
with equilibrium value

Wm = (Ykap + ’y{kT()/(’)/m + 7(3)- (9)

Other couplings could easily modify the mode energy
(~kT) without significantly affecting the overall plasma
thermal energy (~10° kT). Thus, steady-state plasmas
can exhibit spectral peaks which are 10 to 100 times
larger than thermal, when external signals stimulate par-
ticular plasma modes without proportionately heating the
plasma [as in Fig. 2(a)]. Similarly, particular modes in a
warm plasma have been damped (i.e., cooled) by up to
25X with an external feedback circuit, without substan-
tially cooling the plasma. Thus, the accuracy of the tem-
perature diagnostic may be limited by unwanted rf
couplings to the plasma mode.
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FIG. 5. Plasma temperature measured by emission/reflection
technique, compared to the standard dump temperature mea-
surement. The triangles are from the IV apparatus and the
circles are from the EV apparatus.
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