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Quasiperiodic Bloch-Like States in a Surface-Wave Experiment
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Bloch-like surface waves associated with a quasiperiodic structure are observed in a classic wave
propagation experiment which consists of pulse propagation with a shallow fluid covering a quasiper-
iodically drilled bottom. We show that a transversal pulse propagates as a plane wave with quasiperiodic
modulation, displaying the characteristic undulatory propagation in this quasiperiodic system and
reinforcing the idea that analogous concepts to Bloch functions can be applied to quasicrystals under
certain circumstances.
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co-workers [5] and a simulation similar to the conditions by a vertical monofrequency vibration but also a new
The main difficulty towards the development of a
systematic analytic approach to the transport properties
of quasiperiodic systems has been the absence of an
analogous Bloch theorem approach as used in the periodic
case. In the first efforts to apply a modified version of the
Bloch theorem, it was noticed that the dense spectrum of
quasiperiodic systems is dominated by only a few special
reciprocal lattice points that may be taken to construct a
quasi-Brillouin zone [1]. Thus, by considering only the
dominant Fourier components, the atomic distribution
can be expanded in terms of a discrete aperiodic lattice.
Wave functions of the form �k � uk�r�eik�r will there-
fore solve the Schrödinger equation. In this case uk is
quasiperiodic and should formally be defined on a count-
able dense set of reciprocal lattice vectors. But, by the
above considerations, this expansion is useful since the
Fourier development of the modulation function uk can
be restricted to the few special reciprocal vectors that
dominate the spectra. Thus, Bloch-like states could de-
scribe the plane wave propagation in so schematized
quasicrystals and free-electron-like bands are expected.
Recently this idea was experimentally tested showing
that analogous concepts to Bloch functions can be applied
to quasicrystals [2].

The classic wave propagation in quasicrystalline sys-
tems was addressed in a first seminal acoustic experiment
of He and Maynard [3] by the feature that acoustical
waves are ideal tools to investigate formally similar
quantum propagation effects [4]. On the other hand, ap-
pearance of the quasicrystalline symmetry in fluids dy-
namics was first predicted theoretically by Zaslavsky and
0031-9007=03=90(11)=114501(4)$20.00 
of the present experiments was reported in Ref. [6].
Finally, compressible quasisymmetric flows were consid-
ered in Ref. [7], whereas a general outlook on order and
disorder in fluid motion can be found in the experiments
of Gollub [8].

In this Letter, we shall see that a discrete restricted
spectral scenario can be displayed by means of impulsive
waves in hydrodynamic quasicrystals, where we observe
Bloch-like surface waves. The waves are generated at the
frequencies corresponding to the Fourier components of
the quasiperiodic structure at the dominant diffraction
spots. The observed Bloch-like waves are plane waves
with quasiperiodic modulation generated when a pulse
propagates transversally to the quasiperiodic structure.
Liquid surface waves shape a quasiperiodic grid that
obeys the so-called Octonacci sequence, previously
studied [9,10] but never observed in any experiment.

The quasiperiodic structure involved in our experiment
is the octagonal Ammann-Beenker tiling composed by
squares and rhombuses [11]. Associated with this octago-
nal tiling is a quasiperiodic sequence, named the
Octonacci sequence [9], that can be generated starting
from two steps L and S, which are related according to the
irrational ratio L=S � 1�

���
2

p
, by iteration of substitution

rules: L ! LSL and S ! L.
The experiments are performed with surface waves

generated on a shallow fluid that covers the quasiperiodi-
cally drilled bottom of a transparent vessel. Such experi-
ments are similar to others realized in vessels with
periodic bathymetry and described elsewhere [12,13]
but here not only a continuous-wave excitation driven
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experiment of transversal pulse propagation is performed.
The bottom dimples are located at 121 vertices of the
octagonal tiling. The edge length l of the tiling is 8 mm
with an error lower than 0:4%, the radius r of the cylin-
drical bottom wells is 1:75 mm with an error lower than
1% and their depth d is 2 mm. The depth of the liquid
layer over the cylindrical wells is given by h2 � h1 � d,
where h1 is the depth of the thin liquid layer covering the
bottom of the vessel among holes.

Under conditions of continuous-wave excitation, an
inertial hydrodynamical undulatory instability grows
over the bottom wells when the system vibrates vertically
at a frequency of 35 Hz. Such an instability becomes
remarkable (Fig. 1) due to the high density and the very
low surface tension of the liquid [14]. Oscillating bulges
over dimples are connected by surface waves with shorter
wavelength that decorate the shallow liquid region among
holes with h1 being 0:4 mm. This is a physical scenario
similar to that of the Kronig-Penney model but adapted
here to a 2D quasiperiodic system. It should be remarked
that Fig. 1 is the first available experimental example of a
quasiperiodic pattern of waves not arising from a non-
linear instability such as the Faraday instability. Standing
waves are coupled to only two rings of Fourier wave
components of the quasiperiodic bottom structure, as
shown in the inset of Fig. 1. Their wave number ratio is
1�

���
2

p
, as it can be measured in the diffraction pattern

(see below). If the effective Fourier transform of a qua-
siperiodic structure is restricted to a discrete set of
Fourier peaks as in this case, then Bloch-like modulation
FIG. 1. Snapshot of the system vibrating vertically at a fre-
quency of 35 Hz, under conditions of continuous wave excita-
tion. The inset shows its Fourier spectrum with a well defined
and discrete set of relevant components.
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functions can be used to describe the wave propagation in
such a simplified quasicrystal [15]. The pattern of Fig. 1
is due to the strong coupling between liquid surface
waves and the bottom quasiperiodic topography and
does not depend on the shape of the vessel boundary.
Undistinguishable patterns are generated with octagonal
or circular boundaries. Although the boundaries are re-
flecting vertical walls, the boundary symmetry matches
the symmetry of this standing wave experiment allowing
the mentioned boundary-independent strong wave cou-
pling. Because of the accuracy on realizing the setup,
localization phenomena do not appear in the described
experiment. However, slight tiltings of the vessel generate
wave domains [12,13]; furthermore, point and linear
defects can be easily introduced in the system by drop-
ping mercury on the bottom dimples to study new inter-
esting wave localization phenomena [16].

The propagation of a plane wave through the octagonal
quasiperiodic structure can be visualized by means of an
experiment of wave pulse propagation. A coupling be-
tween the vertical waves of the vessel-liquid system and
the surface waves generated by a transversal pulse is
expected, modeling in this way the propagation of a plane
wave through the quasiperiodic structure. This experi-
ment was realized in a vessel with octagonal boundary.
The octagon side L is 4 cm and it is perpendicular to the
�-X direction of the well structure. The surface ratio f
between bottom holes and the whole octagon is about 0:15
with h1 being 0:5 mm. The system is excited near the
octagonal boundary with a wave pulse parallel to the
liquid surface and perpendicular to a side of the octagon.
The signal is picked up by means of a Brüel & Kjaer 4344
accelerometer placed at the center of the vessel and it is
processed by means of a digital acquisition system. The
impulsive signal and the corresponding Fourier transform
are shown in Fig. 2 (inset and solid line, respectively).
Three clear spectral peaks of the vibrational vessel-liquid
system appear at about 20, 30, and 50 Hz. As we shall see,
such resonances indicate the existence of three narrow
band gaps in the liquid surface wave propagation [13], i.e.,
standing liquid waves are generated at approximately the
above generated frequencies.

At the start of each pulse the liquid feels the perturba-
tion and a nice quasicrystalline surface wave pattern
suddenly appears [Fig. 3(a)]. A transitory weak turbu-
lence arises in the system after scarcely 0:04 s [Fig. 3(b)],
whereas robust standing waves drawing clear quasiperi-
odic grids can be observed between 0:08 and 0:24 s on the
liquid surface [Fig. 3(c)]. Finally, quasiperiodic grid pat-
terns decay until the arrival of the next pulse. As wave
phase velocities are about 11 cm s�1 and the wave group
velocity is nearly null near the gaps, times for an echo at
the boundaries to come back are much longer than ob-
servation time.

The robust quasiperiodically spaced standing waves
shown in [Fig. 3(c)] are generated by discrete Bragg
114501-2
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FIG. 3. Temporal sequence of patterns observed when
the system is disturbed with a transverse pulse. (a)
Quasicrystalline pattern observed at the start of each pulse.
(b) A transitory weak turbulence is observed after 0:04 s. (c)
Standing waves draw clear quasiperiodic grids between 0:08
and 0:24 s.
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FIG. 2. The solid line is the Fourier transform of the impul-
sive signal as picked up by an accelerometer at the center of the
vessel. It shows clear resonances at approximately 20, 30, and
50 Hz. Such resonances are specific of the system. The first
peak at very low frequency, close to the origin, corresponds to
the Fourier transform of the square pulse that excites the
system. The signal in the time domain is presented in the inset.
The dashed line is the gray scale of the subpattern along the
�-X direction as represented in Fig. 4 versus frequency. The
gray scale (between 0 and 1) was rescaled to match the peak
of the Fourier transform at 30 Hz. Three standing waves
indicating narrow band gaps appear at approximately 20, 32,
and 50 Hz.
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resonances and thus can be considered quasiperiodic
Bloch-like waves. To verify this, first note that the irra-
tional ratio LS=L �

���
2

p
is apparent in our experiment

[Fig. 3(c)]. Now, using a crystallography-oriented com-
puter program [17], the Fourier transform of the pattern
of Fig. 3(c) is calculated and shown in Fig. 4(a). Such
diffraction pattern matches with an adequate subset of the
diffraction pattern of the direct product of both orthog-
onal Octonacci sequences calculated according to theo-
retical methods [9,18] as shown in Fig. 4(b). The absence
of some diffraction peaks indicates the directional char-
acter of the impulsive action. The pulse runs along the
�-X direction from the upper left to the bottom right
corner in both patterns at the top of Fig. 4. Along this
direction, an intensity profile is taken in the experimental
pattern and recovered the inverse Fourier transform of
that unidimensional diffraction subset. The result is
shown in Fig. 4(c) which displays an Octonacci sequence,
and it matches with that generated theoretically starting
from the above mentioned substitution rules. Finally, the
above described intensity profile along the �-X direction
is scaled according to the wave number of the waves of
the diffraction pattern shown in Fig. 3(c). Such scale is
then changed according to the approximate dispersion
relationship given [13] by
114501-3
!2 � gk
�
1�

T
�g

k2
�
tanh�kh0�;

where h0 � h1�1� f� � h2f, ! is the angular frequency,
k is the wave number, g is the acceleration due to gravity,
T is the liquid surface tension, and � is the liquid density
[14]. In Fig. 2 (dashed lines) the gray scale intensity
profile is plotted versus the frequency according to the
above mentioned change of scale. The first maximum is
scaled by the wave number k � 11 cm�1, that corre-
sponds to the main ubiquitous wave appearing in the
experimental pattern of Fig. 3(c). As it can be seen,
diffraction peaks which represent narrow band gaps
closely match in frequency with those independently
measured also in Fig. 2. Thus, in this restricted scenario,
where the resonances of the vibrational coupling gener-
ates a discrete spectrum, the wave pattern observed in
Fig. 3(c) corresponds to quasiperiodic Bloch-like states.

If experiments of pulse propagation are realized in
vessels with periodic bathymetry [12,13] no signal of
turbulence appears. Thus, as remarked in a different con-
text [10,19], the quasiperiodicity of the hydrodynamical
system could be the origin of the weak chaos observed
in the described experiments just at the start of
pulses, when amplitudes are higher and hence the non-
linearity is stronger. Then, a rapidly increasing number of
114501-3
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FIG. 4. Experimental (a) and theoretical (b) Fourier trans-
form of the pattern shown in Fig. 3(c). (c) Inverse Fourier
transform of a subpattern along the �-X is shown. The
Octonacci sequence is clearly recovered. (d) Inverse Fourier
transform of pattern shown in Fig. 3(b). The structure of the
octagonal tiling underlying on the well quasiperiodic arrange-
ment of the vessel bottom is recovered.
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incommensurable Fourier harmonics can grow due to the
finite frequency bandwidth of the pulse and the incom-
mensurate nature of the system. This gives rise to the
preturbulent state of the surface waves. When the multi-
scattering becomes weaker, the Fourier mode cascade
decays and the propagative wave exhibits a clean quasi-
periodic grid pattern.

Anyway, the quasiperiodic structure underlies in spite
of the weak turbulence apparent in Fig. 3(b). This is
evident in Fig. 4(d), which is the inverse Fourier trans-
form of Fig. 3(b). The direct product of two orthogonal
Octonacci sequences is recovered there, showing a patch
of the well-known octagonal tiling filled with square and
rhombic tiles [11].

In conclusion, we have shown Bloch-like surface waves
associated with a quasiperiodic structure in a classic wave
propagation experiment. These waves draw clear quasi-
114501-4
periodic grids that obey the Octonacci sequence. Our
results along with earlier ones [3] can be helpful to the
understanding of the characteristic undulatory propaga-
tion in quasiperiodic systems.
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