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A broad class of exact self-similar solutions to the nonlinear Schrödinger equation (NLSE) with
distributed dispersion, nonlinearity, and gain or loss has been found. Appropriate solitary wave
solutions applying to propagation in optical fibers and optical fiber amplifiers with these distributed
parameters have also been studied. These solutions exist for physically realistic dispersion and non-
linearity profiles in a fiber with anomalous group velocity dispersion. They correspond either to
compressing or spreading solitary pulses which maintain a linear chirp or to chirped oscillatory
solutions. The stability of these solutions has been confirmed by numerical simulations of the NLSE.
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[9]; however, they do have solitary wave solutions which
have often been called solitons. The second and more

This ansatz follows from the analysis of the existence of
self-similar solutions to the equation and the value of this
Studies of self-similar solutions of the relevant non-
linear differential equations have been of great value in
understanding widely different nonlinear physical phe-
nomena [1]. Although self-similar solutions have been
extensively studied in fields such as hydrodynamics and
quantum field theory, their application in optics has not
been widespread. Some important results have, however,
been obtained, with previous theoretical studies consid-
ering self-similar behavior in radial pattern formation
[2], stimulated Raman scattering [3], the evolution of
self-written waveguides [4], the formation of Cantor set
fractals in soliton systems [5], the nonlinear propagation
of pulses with parabolic intensity profiles in optical fibers
with normal dispersion [6], and nonlinear compression of
chirped solitary waves [7,8].

In this Letter we present the discovery of a broad class
of exact self-similar solutions to the nonlinear Schrö-
dinger equation with gain or loss (the generalized
NLSE) where all parameters are functions of the distance
variable. This class also encloses the set of solitary wave
solutions which describes, for example, such physically
important applications as the amplification and compres-
sion of pulses in optical fiber amplifiers [9]. These linearly
chirped solitary wave solutions apply in the anomalous
dispersion regime and may be contrasted with the asymp-
totic solutions appropriate in the normal dispersion re-
gime [10,11]. The importance of the results reported here
is twofold: first, the approach leads to a broad class of
exact solutions to the nonlinear differential equation in a
systematic way. Some of these solutions have been ob-
tained serendipitously in the past, but we emphasize the
importance of the use of self-similarity techniques which
are broadly applicable for finding solutions to a range of
nonlinear partial differential equations, having applica-
tions in a variety of other physical situations. These
equations are not integrable by the inverse scattering
method, and, therefore, they do not have soliton solutions
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specific significance of these results lies in their potential
application to the design of fiber optic amplifiers, optical
pulse compressors, and solitary wave based communica-
tions links.

The nonlinear Schrödinger equation with gain in the
form used in nonlinear fiber optics is given by

i z �
��z�
2

 �� � ��z�j j2 � i
g�z�
2
 ; (1)

where we suppose that all parameters �, �, and g are
functions of the propagation distance z. This equation
describes the amplification or attenuation [when g�z� is
negative] of pulses propagating nonlinearly in a single
mode optical fiber where  �z; �� is the complex envelope
of the electrical field in a comoving frame, � is the
retarded time, ��z� is the group velocity dispersion
(GVD) parameter, ��z� is the nonlinearity parameter,
and g�z� is the distributed gain function. In the absence
of gain this equation has the well known soliton solutions
when the dispersion and nonlinearity are constant.
Furthermore, it is known that in the presence of constant
loss or gain, the familiar (unchirped) soliton pulse shape
can be maintained by propagating through a fiber with
exponentially varying nonlinearity. This follows using
Eq. (1) without gain but with constant dispersion and
nonlinearity using the transformation  0 � exp�g2 z� .
We are concerned here, however, with solutions charac-
terized by a linear chirp.

The complex function  �z; �� can be written as

 �z; �� � U�z; �� exp�i��z; ��	; (2)

where U and � are real functions of z and �. We look for
self-similar solutions of the NLSE assuming that the
phase has a quadratic form:

��z; �� � a�z� � c�z���� �c�2: (3)
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approach has been confirmed for any gain function in the
case when �� > 0 [11]. Equations (1)–(3) yield a self-
similar form of the amplitude [12]:

U�z; �� �
1�����������������������

1� c0D�z�
p F

�
�� �c

1� c0D�z�

�
exp

�
1

2
G�z�

�
; (4)

where �c is the center of the pulse, and the functions a�z�,
c�z�, D�z�, and G�z� in the solutions given by Eqs. (3) and
(4) are

a�z� � a0 �
�
2

Z z

0

��z0�dz0

�1� c0D�z0��2
; (5)

c�z� �
c0

1� c0D�z�
; (6)

D�z� � 2
Z z

0
��z0�dz0; G�z� �

Z z

0
g�z0�dz0; (7)

where a0, �, and c0 are the integration constants.
The necessary and sufficient condition for the exis-

tence of such self-similar solutions is given by the fol-
lowing relationship between the gain profile and the
parameters ��z� 
 ��z�=��z� and ��z� [12]:

g�z� �
1

��z�
d
dz
��z� �

2c0��z�
1� c0D�z�

; (8)

where c0 � 0. The function F�T� which determines the
amplitude U�z; �� in Eq. (4) can be found by solving the
nonlinear differential equation

d2F

dT2 � �F� 2�F3 � 0; (9)

where the scaling variable T and the coefficient � are

T �
�� �c

1� c0D�z�
; � � �

1

��0�
� �

��0�
��0�

: (10)

Integrating Eq. (9) for the case ��z���z�< 0 and using
Eq. (4) we find the amplitude of the solitary wave solu-
tion:

U�z; �� �

������������
j��z�j

p
�0�1� c0D�z��

sech

�
�� �c

�0�1� c0D�z��

�
: (11)

The integration constant � for this case is � � ��2
0 , where

�0 is the initial pulse width. Another so-called kink
solution follows from Eq. (9) with the condition
��z���z� > 0 and yields the amplitude in the form

U�z; �� �

���������
��z�

p
�0�1� c0D�z��

tanh

�
�� �c

�0�1� c0D�z��

�
: (12)

For this case � � �2=�20. The homogeneous solution
(independent of �) also follows from Eq. (9) for either
sign of the product ��z���z� and is
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U�z; �� �
�

������������
j��z�j

p
1� c0D�z�

; (13)

where � is an arbitrary real parameter and � �
�2�2sgn��0�. We note that Eq. (9) also has six bounded
periodic solutions which are proportional to Jacobian
elliptic functions: sn��; k� and cd��; k� for �� > 0,
cn��; k�, dn��; k�, sd��; k�, and nd��; k� at ��< 0, where
� � T=�0, and k is an arbitrary parameter in the interval
0< k< 1. Hence by Eq. (4) these solutions yield six
bounded periodic solutions for the amplitude U�z; ��
with appropriate constants �� ��2

0 . In the case ��z� �
const the traveling solutions can also be found by a
Galilean transformation. These oscillatory solutions cor-
respond to the transmission of amplitude modulated light
which experiences a simultaneous amplification (or at-
tenuation) and frequency shift under the influence of non-
linearity, dispersion, and gain (or attenuation). These
solutions could provide a new technique for generating
amplitude modulated light at THz frequencies.

We note that in the case when the dispersion and non-
linearity are constants, Eq. (8) yields the distributed gain
g�z� � 2c0��1� 2c0�z�

�1. For this particular case the
solitary wave solution has been reported in [7] which by
transformation also yields the solution for propagation
with an exponentially distributed dispersion parameter
and constant gain. The numerical analysis of pulse com-
pression in an exponentially decreasing dispersion profile
has also been investigated in [13], while soliton pulse
compression with adiabatic gain profiles has been dem-
onstrated experimentally by using fiber Raman amplifiers
[14]. The more general solutions reported here are par-
ticularly useful in the design of amplifying or attenuating
pulse compressors for chirped solitary waves.

Returning now to the solitary wave solution of the
generalized NLSE (with gain term) let us consider the
compression problem of the laser pulse in a dispersion
decreasing optical fiber. For definiteness we assume that
the GVD and the nonlinearity parameter are distributed
according to

��z� � �0 exp���z�; ��z� � �0 exp��z�; (14)

where �0 < 0, �0 > 0, and � � 0 (� > 0 for dispersion
decreasing fibers). As follows from Eq. (8) the gain
function for self-similar solutions in this case is

g�z� � ���
���� 1�

�� 1� exp���z�
; (15)

where we have introduced the parameter � 

��2c0�0�

�1. Hence the phase functions a�z� and c�z�
given by Eqs. (5) and (6) at � � ��2

0 can be written

a�z� � a0 �
�0�2

2��20

�
1

�� 1� exp���z�
�

1

�

�
; (16)
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c�z� �
�
2�0

�
1

�� 1� exp���z�

�
; (17)

where � and � are arbitrary (nonzero) parameters. The
amplitude of the solitary wave solution given by Eq. (11)
in this case is

U�z; �� � A�z�sech
�
�� �c
W�z�

�
; (18)

where the scaling of the peak amplitude A�z� and the
pulse width W�z� are given by

A�z� �
�
�0

���������
j�0j

j�0j

s �
exp�� 1

2 ��� ��z	

�� 1� exp���z�

�
; (19)

W�z� �
�0
�
��� 1� exp���z�	: (20)

Let us consider the most typical physical situation
when the loss in an optical fiber is a constant.
According to Eq. (15) this takes place at � � 1 (� � 0)
and � > 0; hence the gain g�z� � �� is negative. It is
remarkable that [as follows from Eqs. (18) and (20)] the
width of the sech pulse at � � 1 and � > 0 tends to zero
when z goes to infinity. This means that the case �0 < 0,
� > 0, �0 > 0, � > 0, and � � 1 provides the optimal
situation for pulse compression. In fact Eq. (18) shows that
j �z; ��j2 ! E0 exp���z� ��� �c� as z! 1, where
E0 � 2j�0j��0j�0j�

�1 is the input energy of the pulse
and  ��� �0� is the singular Dirac function. More-
over, there are three cases which follow from Eq. (19)
(when � � 1, � > 0, � > 0) for the peak amplitude A�z�:
(i) � > �, A�z� grows for increasing z, (ii) �< �, A�z�
decreases for increasing z, and (iii) � � �, A�z� � const.

A key consequence of this exact solution for constant
loss is that the pulse can be compressed to any required
degree as z! 1 while maintaining its sech shape and
linear chirp in the presence of an exponentially dis-
tributed dispersion and nonlinearity parameter [see
Eqs. (14)]. This analysis supposes that we neglect the
higher order terms in the generalized NLSE, which will
ultimately limit the amount of compression that can be
obtained.

The solution given by Eqs. (16)–(20) at �< 0 can also
be applied to the problem of pulse compression in optical
fiber amplifiers. In the case �0 < 0, � > 0, �0 > 0,
�< 0, and � � 1 the gain g�z� � �� is positive and
hence the energy of the pulse grows as E�z� �
E0 exp���z�, but the width of sech pulse tends to zero
as W�z� � �0 exp���z� when z! 1. From Eq. (14) it
follows that in this case we should use a decreasing non-
linearity parameter together with a decreasing GVD
parameter in a fiber amplifier to compress (theoretically)
the sech pulse to any required width. This is to be con-
trasted with previous attempts to simulate the nonlinear
amplification of pulses in the anomalous dispersion re-
gime using constant parameters, which have shown that
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the pulse tends to break up into a series of pulses due to
the combined effects of self-phase modulation and dis-
persion. Allowing the amplifier to have a distributed gain
profile (� � 0) provides other design possibilities for an
amplifying pulse compressor. From this solution it also
follows that for �< 0 (corresponding to an increasing
dispersion parameter j��z�j), the chirped sech pulse will
spread for both amplification and attenuation. It is im-
portant to realize that the general class of solutions re-
ported here includes those applying to some physically
realistic constraints such as assuming that any two of the
three distributed parameters, for example the gain as in
(7), be held constant. More creative possibilities involve
allowing two of these parameters to be appropriately
engineered while one is held constant.

We point out that the case � > 0, � � 0, � > 1, and
g�z� � ����� 1�=��� 1� exp���z�	 has application
to long-haul chirped soliton links where fiber losses are
compensated periodically by an amplification system.
This long-haul link is based on a distributed dispersion-
loss-managed chirped soliton propagation regime and is
an alternative to loss-managed soliton systems [15]. The
main advantage of such systems is the absence of soliton
radiation due to the fact that solitary waves propagating
in this regime are an exact solution of Eq. (1) and hence
generate no radiative noise.

The self-similar solitary wave solutions derived here
correspond to hyperbolic secant pulses with a linear chirp
which propagate without change in shape, only a scaling
of their width and amplitude. These self-similar pulses
maintain their linear chirp, although this chirp increases
when � > 0 (� � 1) and decreases when �< 0. These
features are shown in Fig. 1 where the analytical solu-
tion is compared with the results of numerical propaga-
tion of a hyperbolic secant pulse with the correct initial
amplitude and chirp through the fiber with the distributed
parameters given in Eqs. (14) and (15). In these simula-
tions, the input pulse has an initial width of 7 ps and
energy of 0.5 pJ, and the amplifier parameters are �0 �
�0:01 ps2 m�1, �0 � 0:01 W�1 m�1. The pulse profile is
plotted at a propagation length of 10 m for (a) � � 0:1,
� � �0:1 (an attenuated solution) and (b) � � 0:1, � �
0:1 (distributed amplification). Clearly the numerical
simulations are in excellent agreement with the analytical
predictions and in other simulations the pulse has been
shown to compress by orders of magnitude in a few
meters of fiber. It must be emphasized, however, that
before these levels of compression are reached in a real
amplifier or attenuator, the pulse evolution would be af-
fected by higher order terms in the NLSE which are
neglected in deriving these solutions.

Let us consider now the case � � �0 exp�g0z�, ��z� �
�0, g�z� � g0 (�0�0 < 0). For these parameters the nec-
essary condition given by Eq. (8) is not satisfied for all
z; however, this condition is complied within the inter-
val z 2 �0; "� at the limit when "! 0, g0 ! 1, and
113902-3
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FIG. 1. Comparison of analytical solution (circles) with nu-
merical simulation (solid line) for a propagating solitary pulse
in an amplifier with constant loss (a) or gain (b) and distributed
dispersion and nonlinearity.
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lim"!0 g0" � G. Hence using Eqs. (5), (6), and (11) we
find an exact solution of this problem (when "! 0� for
output pulse  out���:

 out��� � exp

�
G
2

�
 in���;

 in��� �

���������
j�0j

p
�0

sech

�
�� �c
�0

�
exp�i�0���	;

(21)

where  in��� is input pulse at z � 0, �0 � �0=�0, and
�0��� � a0 � c0��� �c�

2. This result can be applied to
an optical amplifier when the length " is small and the
gain g0 � G=" is large but G is limited (not large); then
according to Eq. (21) the output pulse is also a chirped
soliton with the same width �0 and phase �0���; however,
it has a new amplitude; i.e., the amplifier acts linearly on
the pulse. Note that this result is also correct when g0 < 0
andG< 0. Thus we have found an exact solution of Eq. (1)
with singular distributed parameters

��z� � �0 exp�G "�z� "=2�z	; ��z� � �0;

g�z� � G "�z� "=2�;
(22)

where  "�z� is delta sequence defined as  "�z� � "�1 at
z 2 ��"=2; "=2� and  "�z� � 0 at z =2 ��"=2; "=2�. We
note that the usual functional definition of a delta function
for this nonlinear problem is inapplicable since the prod-
uct of such distributions is undefinable [16]; however, for
our delta sequence any exponentials are well determined:
 "�z�

n � "��n�1� "�z�.
We have also performed numerical simulations to de-

termine the stability of the evolution of these solitary
pulses in the presence of perturbations and nonideal
parameter profiles. The evolution is more sensitive to
the initial chirp than the peak amplitude, but in both
cases the addition of small amounts of random noise to
the input pulse amplitude and phase did not significantly
affect the evolution. Indeed in both cases the pulses
evolved towards the ideal form, indicating the stability
of the solution.
113902-4
The exact effects of the higher order terms in the
NLSE, which will need to be considered as the pulse
compresses towards zero width, and the intensity and
pulse width at which these terms become important will
be the subject of future numerical investigations. Pre-
liminary investigations have shown, however, that the
presence of the linear chirp minimizes the effects of
stimulated Raman scattering which causes the self-
frequency shift in the case of unchirped soliton pulses.

The results given here have been found by the system-
atic method [12] and represent the most general class of
self-similar solutions to the NLSE with distributed coef-
ficients, which can be readily applied to pulse propagation
in nonlinear optical fiber amplifiers, optical fiber com-
pressors, and long-haul links with distributed dispersion-
loss-managed chirped solitons. Since linearly chirped
pulses can readily be generated and compensated, these
newly found propagation regimes may find significant
applications.
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