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Exactness of Two-Body Cluster Expansions in Many-Body Quantum Theory
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The Horn-Weinstein formula and the variational principle, combined with numerical results for a few
many-electron systems, are used to provide support for a conjecture that the exact ground-state wave
function for a Hamiltonian system containing up to two-body terms may be represented by an
exponential cluster expansion employing a finite two-body operator.

DOI: 10.1103/PhysRevLett.90.113001 PACS numbers: 31.15.–p, 31.10.+z, 31.25.–v, 71.10.–w
where hpq � vpq � �zp�q � �pzq�=�N � 1�, with �p rep-
resenting the usual Kronecker delta. and by determining the operator X entering Eq. (1)
It has been suggested that it may be possible to repre-
sent the exact ground-state wave function of an arbitrary
many-fermion pairwise interacting system by an expo-
nential cluster expansion involving a general two-body
operator [1–5]. If true, this could provide enormous re-
ductions in computational requirements for accurate
quantum calculations for many-fermion systems, elimi-
nating the astronomical costs of generating the exact
many-particle wave functions by solving the full configu-
ration interaction (full CI) eigenvalue problem.

Specifically, it has been proposed that the exact
ground-state wave function j�i of a given many-fermion
system described by the Hamiltonian containing up to
two-body terms, obtained in a finite spin-orbital basis set,
has the following simple form [1]:

j�i � eXj�i; (1)

where X is a general two-body operator and j�i is a
normalized reference state, which in principle is an arbi-
trary wave function that has a nonzero overlap with j�i,
but in practice should reasonably well approximate j�i.
In the language of second quantization,

X � 1
2x

rs
pqcpcqcscr; (2)

where cp (cp) are the usual creation (annihilation) oper-
ators (cp � cyp) associated with a given orthonormal
spin-orbital basis set, xrspq are some coefficients, and the
Einstein summation convention is assumed. According to
Nooijen [1], the number of independent coefficients xrspq
should be identical to the number of two-particle integrals
vrs
pq that enter the Hamiltonian:

H � zqpcpcq �
1
2v

rs
pqcpcqcscr: (3)

One could redefine X by considering the one- and two-
body components in Eq. (2) [2,3], but this is not really
necessary since, for a fixed number of particles (N), one
can always rewrite H in terms of two-body terms only:

H � 1
2h

rs
pqcpcqcscr; (4)

rs rs r s r s q
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Of all arguments in favor of the correctness of Eq. (1)
given in the earlier papers on this topic [1–5], the most
convincing is the recent calculation performed by Van
Voorhis and Head-Gordon, who attempted to minimize
the expectation value expression,

E�~XX� � h�je~XXy
He~XX j�i=h�je~XXy

e~XX j�i; (5)

over two-body operators,

~XX � 1
2~xx

rs
pqc

pcqcscr; (6)

obtaining quite accurate energies for a few small many-
electron systems [5]. The only problem is that these
authors did not use the exact form of the wave function,
Eq. (1), but, rather, a truncated power series in X corre-
sponding to Eq. (1). In addition, the 6-electron/12-spin-
orbital STO-3G model of the nitrogen molecule, studied
in Ref. [5], is so small that the number of independent
parameters xrspq is larger than the dimension of the corre-
sponding N-electron Hilbert space (the full CI eigenvalue
problem). With an exception of very small systems and
small basis sets, the number of two-body parameters is
considerably smaller than the dimension of the full CI
problem, so one has to test Eq. (1) on other systems.

This Letter provides strong evidence that the exact
ground state of a many-fermion system, described by
the Hamiltonian containing one- and two-body terms,
may indeed be represented by the exponential cluster
expansion employing a general two-body operator by
connecting the problem with the Horn-Weinstein formula
[6],

E � lim
t!1

h�je�tHHj�i=h�je�tHj�i � lim
t!1

Et

� lim
t!1

E�Xt�; (7)

where E is the exact ground-state energy,

Et � E�Xt� � h�jeX
y
t HeXt j�i=h�jeX

y
t eXt j�i; (8)

and

Xt � �1
2tH; (9)
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through a direct minimization of the exact form of the
expectation value expression E�~XX�, Eq. (5), over two-
body operators ~XX , Eq. (6), for a few many-electron sys-
tems. Let us recall that the Horn-Weinstein formula,
Eq. (7), provides a basis of the t-expansion method [6],
which allows one to extract the exact properties of physi-
cal systems by considering the Padé approximants for the
power series in t representing Et or dEt=dt [6–8]. Other
variants of the t-expansion method, combining the origi-
nal approach of Ref. [6] with the real-space renormaliza-
tion group and path integral techniques, have been
proposed in Refs. [9,10]. The t-expansion method has
been applied to spin systems [6], non-Abelian lattice
gauge theories [7,8,11], and the Lipkin model [12], and
to formulate the connected-moment energy expansions
[13,14]. The results obtained by minimizing the energy
expression E�~XX�, Eq. (5), over two-body operators ~XX are
compared in this Letter with the ground-state energies
of a few many-electron systems obtained with the
t-expansion method.

Let us begin with the formal arguments, which indicate
that the existence of a two-body operator X, defined by
finite coefficients xrspq, producing the exact ground state
j�i according to Eq. (1), might be a real possibility.
Consider the family M of all two-body operators ~XX,
Eq. (6), that are defined by finite coefficients ~xxrspq and
that have a general structure of the Hamiltonian H,
Eq. (4). This means that M consists of all two-body
operators that are, for example, Hermitian, since H is
Hermitian, and that satisfy relations, such as ~xxrspq � ~xxsrqp,
since hrspq � hsrqp. Obviously, the number of independent
parameters ~xxrspq is identical to the number of coefficients
hrspq or vrs

pq defining the Hamiltonian. It should be noticed
that all operators Xt, Eq. (9), belong to M, although M is
a much larger operator family, which contains infinitely
many operators that are not multiples of H. This remark is
important here, since one can always obtain the exact
wave function by considering the expression (exploited in
Quantum Monte Carlo calculations)

j�i � lim
t!1

eZt j�i; (10)

where Zt 2 M is defined as

Zt � ��H� E�t: (11)

The main difference between Eqs. (1) and (10) is in the
fact that X, Eq. (2), is a finite two-body operator which, as
we show below, is not of the Hamiltonian form, whereas
Zt, Eq. (11), and Xt, Eq. (9), are multiples of the
Hamiltonian. Thus, the Zt and Xt operators can provide
the exact energy and wave function only in the t ! 1
limit [the t-dependent energy Et, Eq. (8), is a monotoni-
cally decreasing function of t, which approaches the exact
ground-state energy E from above [6] ]. This implies that,
in looking for the operatorX defining j�i through Eq. (1),
we cannot constrain X to be of the Hamiltonian form.
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Let us, therefore, minimize E�~XX�, Eq. (5), over all
operators in M. According to the variational principle,
E�~XX� is bounded from below, E � E�~XX� for all operators
~XX 2 M, which implies that there should exist a two-body
operator X 2 M that minimizes E�~XX�,

E�X� � min
~XX2M

E�~XX�: (12)

Clearly,

E � E�X�: (13)

Consider the energy expression Et, Eq. (8), for an arbi-
trary (fixed) value of t. We can write

E�X�<Et: (14)

Equation (14) is valid, since E�X� is a minimum value of
E�~XX�, Eq. (5), in a space of all two-body operators ~XX,
whereas Et � E�Xt� is the value of E�~XX� at ~XX � Xt
[cf. Eqs. (5) and (8)]. In fact, for a given value of t, one
can always easily find a two-body operator Y from M
such that E�Y�<Et. An example of such an operator
might be Xt0 with t0 > t, since Et, Eq. (8), is a monotoni-
cally decreasing function of t [6]. However, since
the operator family M is much larger than the ‘‘one-
dimensional’’ manifold of operators Xt, which are multi-
ples of H, there may exist two-body operators Y 2 M
which satisfy E�Y�<Et and which are not given by
Eq. (9). This indicates that the operator X minimizing
E�~XX� may very well be a finite operator (i.e., defined by
finite coefficients xrspq and not obtained by considering the
limiting case of the t ! 1 operators Xt), although we
cannot provide a rigorous mathematical proof that this is
indeed the case. The existence of a finite operator X 2 M
that minimizes E�~XX� according to Eq. (12) and that is
not of the Hamiltonian form is supported in this Letter
by the numerical calculations for a few many-electron
systems.

Once X is determined by minimizing E�~XX�, the in-
equalities (13) and (14) can be combined into

E � E�X�<Et; (15)

true for any value of t. In view of Eq. (7), by considering
the t ! 1 limit in Eq. (15), we immediately obtain

E � E�X�; (16)

so that the two-body operator X, minimizing E�~XX�, gives
the exact energy E and, in view of the variational prin-
ciple, the exact ground state j�i, as stated in Eq. (1).

Although the above analysis cannot be regarded as
the complete mathematical proof of Eq. (1), since we
cannot rigorously prove the existence of the finite coef-
ficients xrspq that would define the optimum operator X,
the advantage of the above reasoning over the argu-
ments given in Refs. [3,5] is that it frees us from neces-
sarily assuming that operator X is obtained by studying
the t ! 1 operators Xt, Eq. (9), or Zt, Eq. (11). By
minimizing E�~XX�, Eq. (5), in the space of all two-body
113001-2
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operators [or, equivalently, by minimizing E�~XX� in a
finite-dimensional space of variables ~xxrspq], which is ex-
actly how we obtain operator X, we may be able to find
finite parameters xrspq, defining the exact wave function
j�i, because the operator X is not constrained to be a
multiple of H. If the finite operator X, found by some
numerical procedure for minimizing E�~XX�, is a local
rather than a global minimum on the E�~XX� multipara-
meter surface, then the resulting energy and wave func-
tion do not have to be exact. However, even in this case,
the operator X may provide excellent results, opening
thus a possibility of using wave functions (1) in high-
accuracy ab initio calculations.

We have, in fact, numerical evidence that supports
the above statements. For example, by minimizing E�~XX�
for a 6-electron/12-spin-orbital STO-3G model of the
nitrogen molecule, described in Ref. [5], at the equilib-
rium geometry (the N–N distance of 2.068 bohrs), we
obtained the energy of �107:619 941 82 hartrees, which
is precisely the exact, full CI, energy (to within
10�8 hartrees). For an overlap of the normalized wave
function j�i, Eq. (1), generated with the optimum opera-
tor X, and the normalized full CI wave function, we
obtained 1.000 000, which should be compared to an
overlap of 0.962 583 between the normalized full CI
wave function and reference j�i [we used the restricted
Hartree-Fock wave function as j�i]. Although in this
case the number of independent parameters xrspq is larger
than the dimension of the corresponding N-electron
Hilbert space, so that the exactness of Eq. (1) might be
regarded as rather obvious, the absolute values of the
coefficients xrspq, defining the optimum operator X, are
small (ranging between 0.000 073 and 0.202 417). More
importantly, the optimum coefficients xrspq do not satisfy
the relations xrspq � � 1

2 t h
rs
pq or xrspq � �t�hrspq � � �r

p�s
q�,

implied by Eqs. (9) and (11) (� is a constant shift), and
�X;H� � 0, so that X is not of the Hamiltonian form. We
must emphasize that in this and other test cases described
below, we tested (for the first time ever) the exact theory,
in which we used the unexpanded form of e~XX to define
E�~XX� rather than the truncated power series expansion in
~XX used in Ref. [5]. This was made possible by represent-
ing H and ~XX as matrices in the corresponding finite-
dimensional N-electron Hilbert spaces (using all Slater
determinants j��i defining the full CI problem as basis
states). In order to calculate the exact value of E�~XX�,
Eq. (5), in a given iteration of the procedure used to
minimize E�~XX�, we first diagonalized the matrix repre-
senting ~XX with some unitary matrix ~UU to obtain the
diagonal matrix ~DD � ~UU ~XX ~UU�1. Next, we constructed e ~DD

by taking the exponentials of the diagonal elements of ~DD.
After constructing e ~DD , we calculated the matrix repre-
senting e~XX as ~UU�1e ~DD ~UU and applied it to a column vector
representing j�i to obtain j�i, Eq. (1). The value of E�~XX�
was obtained as h�jHj�i=h�j�i, using matrices repre-
senting H and j�i. We minimized E�~XX� in M by the
following methods: the downhill simplex method, the
113001-3
continuous minimization by simulated annealing, and
the conjugate gradient method [15]. The calculations for
N2 required �50 iterations to obtain the convergence. The
calculations for other many-electron systems described
below required a hundred or so iterations to obtain a
reasonably converged result. Clearly, our numerical pro-
cedures are not suitable for larger problems. The point of
this paper is the possibility of representing the (virtually)
exact many-fermion wave functions by Eq. (1) and the
evidence that supports such a claim.

Our findings for N2 apply to other many-electron sys-
tems, including the 4-electron/8-spin-orbital H4 clusters
[16] and the 8-electron/16-spin-orbital H8 model [17]
(eight hydrogen atoms arranged in a distorted octagonal
configuration). The example of the H8 system is particu-
larly important, since in this case the number of two-
body parameters xrspq, used in our calculations, or the
number of independent two-body integrals hrspq, defining
the Hamiltonian (186), are considerably smaller than the
number of all spin- and symmetry-adapted configurations
defining the full CI problem (468). For the � � 1:0 H8
model (� is the parameter of this model, in bohrs, that
describes the deviation of the geometry of the H8 system
from the regular octagon [17]), we have already lowered
E�~XX� to �4:352 982 hartrees. This result agrees with the
exact, full CI, energy to within 8� 10�6 hartrees. The
overlap of the normalized wave function j�i, Eq. (1),
obtained by minimizing E�~XX�, with the normalized full
CI wave function j�FCIi is in this case 0.999 998 (com-
pared to jh�j�FCIij � 0:939 657). For a demanding � �
0:0001 H8 model, characterized by a strong configura-
tional quasidegeneracy [17], we obtained an agreement
with the exact, full CI, energy to within 5:2�
10�5 hartrees and an overlap of the normalized wave
function j�i, Eq. (1), with j�FCIi of 0.999 987 (compared
to jh�j�FCIij � 0:668 268). This is very encouraging,
since, for example, the standard two-body coupled-clus-
ter theories [18,19], including coupled-cluster doubles
and coupled-cluster singles and doubles, which use
the exponential form of the wave function eTj�i, where
T is the excitation operator, give the 6.030 and
5:034 millihartree errors, respectively, in this case. In
both cases of the � � 1:0 and � � 0:0001 H8 models,
the resulting parameters xrspq have small absolute values
(at most 0.316 845 for � � 1:0 and at most 0.596 623 for
� � 0:0001) and �X;H� � 0. It is, thus, possible that the
two-body operator X, describing the exact wave function
via Eq. (1), is defined by finite, relatively small, coeffi-
cients xrspq, which can be obtained by minimizing E�~XX�.
Even if our numerical procedures do not produce the
exact (in a mathematical sense) energies, but, rather,
some local minima of E�~XX�, the very small errors on
the order of 10�5–10�6 hartrees, obtained with two-
body operators only, are intriguing.

Finally, let us compare the energies E�X�, obtained by
minimizing E�~XX�, for a nontrivial many-electron system,
such as H8, where the number of parameters xrspq
113001-3
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is significantly smaller than the dimension of the
corresponding N-electron Hilbert space, with the results
of calculations employing the Padé approximants for Et,
Eq. (8), or dEt=dt, as explained and exploited by Horn and
Weinstein [6–11]. The Padé approximants for Et or dEt=dt
can be used to extract the virtually exact energies of
quantum many-body systems corresponding to the t !
1 limit of Et, Eq. (7) [6–11]. Thus, it is useful to examine
if the direct minimization of E�~XX�, Eq. (5), provides
better energies than those obtained by forming the Padé
approximants for Et or dEt=dt. As explained in Ref. [6],
in the case of using dEt=dt, one calculates the energy by
integrating the �L; L0� Padé approximant for dEt=dt with
L0 � L � 2 over t from 0 to tmax, where tmax is the largest
value of t for which this Padé approximant remains
negative (in theory, dEt=dt < 0 for all values of t [6]).
In our calculations for the H8 system, we calculated the
Padé approximants for Et and dEt=dt by considering the
power series expansions of Et to order t11. Thus, we had
access to all Padé approximants with L� L0 � 11 (for Et)
or L� L0 � 10 (for dEt=dt).

Our findings for the � � 1:0 and � � 0:0001 H8
systems are as follows: The Padé approximant extrapola-
tions for Et give a slow convergence with L and L0. The
resulting energies are rather poor. For example, of all
diagonal approximants for Et that we could calculate
from our data, the best results were obtained with
the [4,4] and [5,5] approximants. For the � � 1:0 H8
model, the [4,4] approximant gave the energy of
�4:343 813 hartrees. This should be compared with the
exact, full CI, energy of �4:352 990 hartrees and with the
E�X� value of �4:352 982 hartrees. For the � � 0:0001
H8 model, the [5,5] approximant gave the energy of
�4:205 334 hartrees, which should be compared with
the exact energy of �4:204 803 hartrees and E�X� �
�4:204 751 hartrees. Our E�X� values, obtained by min-
imizing E�~XX�, are considerably better. The Padé approx-
imant extrapolations for dEt=dt, followed by integrations
over t, turned out to be more reliable, particularly for the
� � 1:0 H8 system. However, even in this case, our E�X�
values are better. Of all integrable approximants for
dEt=dt that we could form from our data, the best results
for the � � 1:0 H8 model were obtained with the [0,8],
[1,9], and [0,9] approximants. These three approximants
gave the energies of �4:352 962, �4:352 953, and
�4:352 940 hartrees, respectively, or the 2:8� 10�5,
3:7� 10�5, and 5:0� 10�5 hartree differences with the
exact energy. This should be compared with the 8�
10�6 hartree difference between E�X� and the full CI
energy. The best result for the � � 0:0001 H8 model
was obtained with the [4,6] approximant, which gave
the energy of �4:205 128 hartrees or the �3:25�
10�4 hartree difference with the exact energy. This should
be compared with the smaller, 5:2� 10�5 hartree, differ-
ence between E�X� and the full CI energy. In the case of
the � � 0:0001 H8 model, many Padé approximants for
dEt=dt have singularities in the region of the negative
113001-4
values of dEt=dt, making them unusable in the energy
calculations. No such problems occur in the direct mini-
mization of E�~XX�.

In summary, by combining the theoretical arguments
based on the Horn-Weinstein formula with the variational
principle and numerical calculations, we demonstrated
that one can obtain the virtually exact description of
pairwise interacting many-fermion systems by represent-
ing their wave functions by exponential cluster expan-
sions employing two-body operators. The two-body
operators defining these cluster expansions are finite
and not of the Hamiltonian form. A direct minimization
of the energy expression involving the two-body operator
defining the many-particle wave function leads to the
results that are better than those obtained with the Padé
approximants of the time-dependent energies defining the
Horn-Weinstein expression for the exact energy.
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[14] P. Markoš and S. Olejnı́k, Phys. Rev. D 42, 2943 (1990).
[15] Numerical Recipes in Fortran: The Art of Scientific

Computing (Cambridge University Press, Cambridge,
England, 1992).

[16] K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18,
1243 (1980).

[17] K. Jankowski, L. Meissner, and J. Wasilewski, Int. J.
Quantum Chem. 28, 931 (1985).

[18] F. Coester, Nucl. Phys. 7, 421 (1958).
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