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Binary N-Step Markov Chains and Long-Range Correlated Systems
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A theory of systems with long-range correlations based on the consideration of binary N-step
Markov chains is developed. In our model, the conditional probability that the ith symbol in the chain
equals zero (or unity) is a linear function of the number of unities among the preceding N symbols. The
correlation and distribution functions as well as the variance of number of symbols in the words of
arbitrary length L are obtained analytically and numerically. If the persistent correlations are not
extremely strong, the variance is shown to be nonlinearly dependent on L. A self-similarity of the
studied stochastic process is revealed. The applicability of the developed theory to the coarse-grained
written and DNA texts is discussed.
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rithms to generate long-range correlated sequences: the
inverse Fourier transformation [8], the expansion-

the system. We focus our attention on the region of �
determined by the persistence inequality 0 	 �< 1=2.
The problem of the systems with long-range spatial
and/or temporal correlations (LRCs) is one of the topics
of intensive research in modern physics. As a rule, the
LRC systems are characterized by a complex structure
and contain a number of hierarchic objects as their sub-
systems. The LRC systems are the subject of study in
physics, biology, economics, linguistics, sociology, geog-
raphy, psychology, and others [1–4]. At the present time,
there is not a generally accepted theoretical model that
describes well the dynamical and statistical properties of
the LRC systems. Attempts to describe the behavior of the
LRCs in the framework of the Tsalis nonextensive ther-
modynamics [5,6] were undertaken in Ref. [7]. However,
the nonextensive thermodynamics is not well grounded,
and construction of the additional models could clarify
the properties of the nonextensive systems.

One of the efficient methods used to investigate the
correlated systems is based on a decomposition of the
space of states into a finite number of parts labeled by
definite symbols. This procedure referred to as coarse
graining is accompanied by the loss of short-range mem-
ory between symbols but does not affect and does not
damage the robust invariant statistical properties of the
long-range correlated systems. In terms of the power
spectrum, one loses only the short-wave part of the
spectrum. The most frequently used method of the de-
composition is based on the introduction of two parts of
the phase space. In other words, it consists in mapping the
two parts of states onto two symbols, say, 0 and 1. Thus,
the problem is reduced to the investigation into the stat-
istical properties of the binary sequences.

One of the ways to get a correct insight into the nature
of correlations in a system consists in an ability of con-
structing a mathematical object (for example, a corre-
lated sequence of symbols) possessing the same statistical
properties as the initial system. There are many algo-
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modification Li method [9], the Voss procedure of con-
sequent random addition [10], the correlated Levy walks
[11], etc. [8]. We believe that among the above-mentioned
methods, using the Markov chains is one of the most
important.

In this Letter, the statistical properties of the binary
N-step Markov chain is examined. In spite of the long-
time history of studying the Markov sequences (see, for
example, Refs. [4,12,13]), the concrete expressions for the
variance of sums of random variables in such strings have
not yet been obtained. Our model operates with two
parameters governing the conditional probability of the
discrete Markov process, specifically with the memory
length N and the correlation parameter �. The correla-
tion and distribution functions as well as the variance D
being nonlinearly dependent on the length L of a word are
derived analytically and numerically. The nonlinearity of
the D�L� function reflects the strong correlations in the
system. The developed theory is applied to the coarse-
grained written texts and to the DNA strings.

Let us consider a stationary binary sequence of sym-
bols, ai � f0; 1g. To determine the N-step Markov chain
we have to introduce the conditional probability,

P�ai � 0 j ai�N; ai�N�1; . . . ; ai�1�; (1)

of following the definite symbol (for example, zero) after
symbols ai�N; ai�N�1; . . . ; ai�1. We choose the simplest
model for the P function where the conditional probabil-
ity pk of the symbol zero occurring after an N word
containing k unities depends on k only and is independent
of the arrangement of previous symbols,

pk �
1

2
��

�
1�

2k
N

�
: (2)

The parameter � defines the strength of correlations in
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FIG. 1. The numerical simulation of the dependence D�L� for
the generated sequence with N � 100 and � � 0:4 (circles).
The correspondent value of the parameter � is 2.32. The solid
line is the plot of function Eq. (7) with the same values of N
and �. The thin solid line describes the noncorrelated
Brownian diffusion, D�L� � L=4. Squares and circles in the
inset correspond to the stochastic and deterministic reduction,
respectively (the parameter of decimation � � 0:5).
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Nevertheless, the major part of our results is valid for the
antipersistent region �1=2<�< 0 as well.

It is easy to see that relation (2) provides the statistical
equality of the numbers of symbols zero and unity in the
Markov chain. In other words, the chain is nonbiased.

In order to investigate the statistical properties of the
Markov chain, we consider the distribution WL�k� of
the words of definite length L by the number k of unities
in them, ki�L� �

P
L
l�1 ai�l, and the variance D�L� �

k2 � k2. Here f�k� �
P

L
k�0 f�k�WL�k�. If � � 0, one ar-

rives at the known result for the noncorrelated Brownian
diffusion, D�L� � L=4. At � � 0, the problem also al-
lows an exact analytical solution. However, we do not
describe the procedure of finding the distribution function
WL�k� and present the final result alone. Readers can
find all necessary details of the analytical treatment in
Ref. [14].

The form of the distribution function depends strongly
on the relationship between the parameters of the prob-
lem, N and �. Under the conditions of not very strong
persistence,

m �
2�

N�1� 2��

 1; (3)

and at large values of k; L� k, the function WL�k� is the
Gaussian,

WL�k� �
1�����������������

2�D�L�
p exp

�
�
�k� L=2�2

2D�L�

�
: (4)

The distribution is centered at point k � L=2, which
corresponds to the equal numbers of zeros and unities in
the L word. The variance D�L� is nonlinearly dependent
upon L,

D�L� �
L
4
�1�mF�L��; (5)

with F�L� � L at L < N and

F�L� � 2�1� ��N � �1� 2��
N2

L

� 2�2 N
2

L

�
1� exp

�
�
L� N
�N

�	
(6)

at L > N. The parameter � is determined by the equa-
tion,

�
�
exp

�
1

�

�
�1

	
�

1

2�
; (7)

which has a unique solution ���� for any value of � 2
�0; 1=2�.

In the opposite limiting case where the parameter � is
very close to 1=2, m � 1, the distribution changes its
shape radically. For example, at L � N, instead of the
bell-shaped Gaussian form, WN�k� becomes concave,

WN�k� � WN�0�
2N

mk�N � k�
; k; N � k � 0; N: (8)

Point k � N=2 corresponds to the minimum of WN�k� �
110601-2
2WN�0�=mN 
 WN�0�. Below we deal with the most
important case m 
 1.

The plot of function D�L� (5) for N � 100 and � � 0:4
is shown by the solid line in Fig. 1. For comparison, the
straight line in this figure corresponds to the dependence
D�L� � L=4 for the usual Brownian diffusion without
correlations (for � � 0). It is clearly seen that the plot
of variance (5) contains two qualitatively different por-
tions. One of them, at L� N, is the superlinear curve that
moves away from the line D � L=4 with an increase of L
as a result of the persistence. The deviation of the D�L�
plot from the line D � L=4 continues even at L > N. The
reason is the phenomenon which we refer to as macro-
persistence. The substance of this phenomenon is that the
sizes of the fluctuation regions of the increased concen-
trations of the symbols zeros (or unities) in the chain are
noticeably higher than the memory length N because of
the specific retardation effect of the memory. The condi-
tional probability (2) provides the expansion of the fluc-
tuation region on the scale of the order of the correlation
length lc � �1� ��N with � given by Eq. (7).

For L � lc, the plot D�L� achieves the linear asymp-
totics,

D�L� �
L
4
�1� 2�1� ��mN�: (9)

The explanation of this phenomenon is as follows. The
length L can be interpreted as the number of jumps of
some particle over an integer-valued 1D lattice or as the
time of the diffusion imposed by the Markov chain. For
L � lc, the wandering process is realized by using practi-
cally independent steps �D1=2�lc� being traversed during
the characteristic ‘‘fluctuating time’’ 	L� lc.

We have supported the obtained analytical results
by numerical simulations of the Markov chain with
the conditional probability Eq. (2). The circles in Fig. 1
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FIG. 2. The D�L� dependence for the coarse-grained texts of
a collection of works on computer science (m � 2:2� 10�3,
solid line), the Bible in Russian (m � 1:9� 10�3, dashed line),
the Bible in English (m � 1:5� 10�3, dotted line), History of
Russians in the 20th Century, by Oleg Platonov (m � 6:4�
10�4, dash-dotted line), and Alice’s Adventures in Wonderland,
by Lewis Carroll (m � 2:7� 10�4, dash-dot-dotted line). In
the upper inset: the D�L� dependence for the coarse-grained
text of the Bible (solid line) and for decimated sequences with
different parameters �: � � 3=4 (squares), � � 1=2 (stars),
and � � 1=256 (triangles). In the lower inset: the antipersistent
portion of the D�L� plot for the Bible is magnified.
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represent the calculated variance D�L� for the 100-step
Markov chain generated at � � 0:4. A very good agree-
ment between the analytical result Eq. (5) and the numer-
ical simulation can be observed.

We close the discussion of the obtained theoretical
results by pointing out one of the most important proper-
ties of the Markov chain, namely, its self-similarity. Let
us reduce the N-step Markov sequence by regularly (or
randomly) removing some symbols and introduce the
decimation parameter � � N�=N 	 1. Here N� is a re-
normalized memory length for the reduced N�-step
Markov chain. It can be proved that the conditional
probability p�

k of the symbol zero occurring after k uni-
ties among the preceding N� symbols is described by
formula (2), where the persistence parameter � and the
memory length N should be replaced by

�� � �
�

1� 2��1� ��
(10)

and N�, respectively. This means that the reduced chain
possesses the same statistical properties as the initial one
but is characterized by the renormalized parameters
�N�; ��� instead of �N;��. The astonishing property of
the Markov chain is that the variance D��L� is invariant
with respect to the decimation transformation �N; �� !
�N�; ���. Therefore, it coincides with the function D�L�
for the initial Markov chain:

D��L� �
L
4
�1�m�L� �

L
4
�1�mL� � D�L�; (11)

i.e., m � inv. The invariance of the function D�L� at L<
N is demonstrated by the inset of Fig. 1.

We have applied the developed theory to the natural
objects, specifically to the coarse-grained written and
DNA texts. It is well known that the statistical properties
of the coarse-grained texts written in any language show
a remarkable deviation from random sequences [4,15]. In
order to check the applicability of the theory of the
binary N-step Markov chains to literary texts we resorted
to the procedure of coarse graining by the random map-
ping of all characters of the text onto a binary set of
symbols, zeros, and unities. The statistical properties of
the coarse-grained texts depend, but not significantly, on
the kind of mapping. The study of different written texts
has shown that all of them are featured by the pronounced
persistent correlations. It is demonstrated by Fig. 2 where
five curves D�L� go significantly higher than the straight
line D � L=4. However, it should be emphasized that
regardless of the kind of mapping the initial portions,
L< 80, of the curves correspond to a slight antipersistent
behavior (see the lower inset). Thus, the persistence is the
common property of the binary N-step Markov chains
and the coarse-grained written texts at large scales.
Moreover, the written texts as well as the Markov sequen-
ces possess the property of the self-similarity. Indeed, the
curves in the upper inset of Fig. 2 obtained from the text
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of the Bible with different levels of decimation demon-
strate this property. Presumably, the self-similarity is the
mathematical reflection of the well-known hierarchy in
the linguistics: letters ! syllables ! words ! sentences
! paragraphs ! chapters ! books ! collected works.

All of the above-mentioned circumstances allow us to
suppose that our theory of the binary N-step Markov
chains can be applied to the description of the statistical
properties of the texts of natural languages. However, in
contrast to the generated Markov sequence (see Fig. 1)
where the full length M of the chain is far greater than
the memory length N, the coarse-grained texts described
by Fig. 2 are of relatively short length M<N. In other
words, the coarse-grained texts are similar not to the
Markov chains but rather to some nonstationary short
fragments. This implies that each of the written texts is
correlated throughout the whole of its length. Therefore,
for the written texts, it is impossible to observe the second
portion of the curve D�L� parallel (in the log-log scale) to
the line D�L� � L=4, similar to that shown in Fig. 1.

Evidently, this portion can be observed only for
collections containing a large number of texts that are
not semantically connected to each other. Besides, the
D�L� dependence would not correspond to the system
correlated throughout its whole length if any integral
literary text is cut into a large number of pieces and
then mixed in an arbitrary way.

As a result, one cannot define the values of both the
parameters N and � for the integral coarse-grained texts.
The analysis of the curves in Fig. 2 can give the combi-
nation m � 2�=N�1� 2�� only. Perhaps, this particular
110601-3
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FIG. 3. The D�L� dependence for the coarse-grained DNA
text of Bacillus subtilis, complete genome for three nonequiva-
lent kinds of the mapping. Solid, dashed, and dash-dotted
lines correspond to the mappings fA;Gg ! 0, fC; Tg ! 1 (the
parameter m � 4:1� 10�2), fA; Tg ! 0, fC;Gg ! 1 (m �
2:5� 10�2), and fA;Cg ! 0, fG; Tg ! 1 (m � 1:5� 10�2),
respectively.
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combination is the real parameter governing the persis-
tent properties of the literary texts.

We note that the origin of the long-range correlations in
the literary texts is hardly related to the grammatical
rules as is claimed in Ref. [4]. At short scales L 	 80
where the grammatical rules are, in fact, applicable, the
character of correlations is antipersistent, whereas seman-
tic correlations lead to the global persistent behavior of
the variance D�L� throughout the whole of literary text.

It is known that any DNA text is written by four
‘‘characters,’’ specifically by adenine (A), cytosine (C),
guanine (G), and thymine (T). Therefore, there are three
nonequivalent types of the DNA text mapping onto one-
dimensional binary sequences of zeros and unities. By
way of example, the variance D�L� for the coarse-grained
text of Bacillus subtilis, complete genome is displayed in
Fig. 3 for all possible types of mapping. One can see that
the persistent properties of DNA are more pronounced
than for the written texts and the D�L� curve does not
contain the linear portion given by Eq. (9). This suggests
that the DNA chain is not a stationary sequence. In this
connection, we point out that Bacillus subtilis is a pro-
caryote and the studied DNA text represents the collec-
tion of extended coding areas interrupted by small
noncoding regions. According to Fig. 3, the noncoding
regions do not interrupt the correlation between the cod-
ing areas, and the DNA system is fully correlated
throughout its whole length. In future works we are going
to apply our method to DNA of different types of organ-
isms such as (a) higher eucaryotes (having extended non-
coding and short coding areas); (b) procaryotes (having
extended coding and short noncoding regions); (c) viruses
(almost 100% coding areas); (d) pure coding sequences;
and (e) pure noncoding sequences.
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Thus, we have developed a new approach for the de-
scription of the strongly correlated one-dimensional sys-
tems. The simple exactly solvable model of the uniform
binary N-step Markov chain is presented. The conditional
probability Eq. (1) chosen in the simplest form (2) gov-
erns the correlation property of the chain. Usually, the
correlation function K�r� and other moments are em-
ployed as the input characteristics for the description of
the correlated random systems. Yet, the function K�r�
describes not only the direct interconnection of the ele-
ments ai and ai�r, but also takes into account their
indirect interaction via other elements. Our approach
operates with the ‘‘origin’’ characteristics of the system,
specifically with the conditional probability (1). There-
fore, we believe that this way allows us to disclose the
intrinsic properties of the system which provide the cor-
relations between the elements. We have demonstrated the
applicability of the suggested theory to the different
kinds of correlated stochastic systems. However, there
are some aspects that cannot be interpreted in terms of
our two-parameter model. Obviously, more complex
models of the Markov chain should be developed for an
adequate description of real correlated systems.
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