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Linguistic Analysis of the Human Heartbeat Using Frequency and Rank Order Statistics
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Complex physiologic signals may carry unique dynamical signatures that are related to their
underlying mechanisms. We present a method based on rank order statistics of symbolic sequences
to investigate the profile of different types of physiologic dynamics. We apply this method to heart rate
fluctuations, the output of a central physiologic control system. The method robustly discriminates
patterns generated from healthy and pathologic states, as well as aging. Furthermore, we observe
increased randomness in the heartbeat time series with physiologic aging and pathologic states and also
uncover nonrandom patterns in the ventricular response to atrial fibrillation.
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Different types of dynamics thus produce different dis-
tributions of these m-bit words.

weighted sum [4] and divided by the value 2 � 1 to keep
the Dm value in the same range of [0, 1].
Physiologic systems generate complex fluctuations in
their output signals that reflect the underlying dynamics.
Therefore, finding and analyzing hidden dynamical
structures of these signals are of both basic and clinical
interest. Here, we detect and quantify such temporal
structures in the human heart rate time series using tools
from statistical linguistics.

Human cardiac dynamics are driven by the complex
nonlinear interactions of two competing forces: sympa-
thetic stimulation increases and parasympathetic stimu-
lation decreases heart rate. For this type of intrinsically
noisy system, it may be useful to simplify the dynamics
via mapping the output to binary sequences, where the
increase and decrease of the interbeat intervals are de-
noted by 1 and 0, respectively [1]. The resulting binary
sequence retains important features of the dynamics
generated by the underlying control system, but is trac-
table enough to be analyzed as a symbolic sequence.

Consider an interbeat interval time series,
fx0; x1; x2; . . . ; xNg, where xi is the ith interbeat interval.
We can classify each pair of successive interbeat intervals
into one of the two states that represents a decrease in x,
or an increase in x. These two states are mapped to the
symbols 0 and 1, respectively [Fig. 1(a)]:

In �
�
0; if xn � xn�1;
1; if xn > xn�1:

(1)

In this study, we map m� 1 successive intervals to a
binary sequence of length m, called an m-bit ‘‘word.’’
Each m-bit word, wk, therefore, represents a unique pat-
tern of fluctuations in a given time series. By shifting one
data point at a time, the algorithm produces a collection
of m-bit words over the whole time series. Therefore, it is
plausible that the occurrence of these m-bit words reflects
the underlying dynamics of the original time series.
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In studies of natural languages, it has been observed
that different authors have a preference for the words they
use with higher frequency [3]. To apply this concept to
symbolic sequences mapped from the interbeat interval
time series, we count the occurrences of different words
[Fig. 1(b)], and then sort them according to descending
frequency. The resulting rank-frequency distribution
[Fig. 1(c)], therefore, represents the statistical hierarchy
of symbolic words of the original time series. For ex-
ample, the first rank word corresponds to one type of
fluctuation which is the most frequent pattern in the time
series. In contrast, the last rank word defines the most
unlikely pattern in the time series.

To define a measurement of similarity between two
signals, we plot the rank number of each m-bit word in
the first time series against that of the second time series
(see Fig. 2). If two time series are similar in their rank
order of the words, the scattered points will be located
near the diagonal line. Therefore, the average deviation of
these scattered points away from the diagonal line is a
measure of the ‘‘distance’’ between these two time series.
Greater distance indicates less similarity and vice versa.
In addition, we incorporate the likelihood of each word in
the following definition of a weighted distance, Dm, be-
tween two symbolic sequences, S1 and S2.

Dm�S1; S2� �

P
2m
k�1 jR1�wk� � R2�wk�jp1�wk�p2�wk�

�2m � 1�
P

2m
k�1 p1�wk�p2�wk�

:

(2)

Here p1�wk�, and R1�wk� represent probability and rank of
a specific word, wk, in time series S1. Similarly, p2�wk�
and R2�wk� stand for probability and rank of the same
m-bit word in time series S2. The absolute difference of
ranks is multiplied by the normalized probabilities as a

m
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FIG. 2. Rank order comparison of two cardiac interbeat in-
terval time series from the same subject. For each word, its rank
in the first time series is plotted against its rank in the second
time series. The dashed diagonal line indicates the case where
the rank order of words for both time series is identical.
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FIG. 1. (a) Schematic illustration of the mapping procedure
for 8-bit words from part of a 2 h heartbeat time series. (b)
Probability distribution of every 8-bit word. The word index
ranges from 0 to 2m � 1 for m-bit words. For our example of
m � 8, there is a total of 256 possible words. The word
(11000110) shown in (a) is labeled as word 198 ( � 128� 64�
4� 2). (c) Rank ordered probability plotted on a log-log scale.
The linear regime (for rank � 50) is reminiscent of Zipf ’s law
for natural languages [2].
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We apply the distance measurement to address the
following questions: (i) Are there unique dynamical pat-
terns associated with each individual? (ii) Are there
characteristic patterns that describe the dynamical struc-
tures of different physiologic/pathologic states? (iii) As a
healthy system changes with disease and aging, can we
see quantifiable changes in the dynamical patterns related
to the degradation of the integrative control systems? We
investigate these questions with databases [5] that include
40 ostensibly healthy subjects with subgroups of young
(ten females and ten males, average 25.9 years) and
elderly (ten females and ten males, average 74.5 years),
a group of subjects (n � 43) with severe congestive heart
failure (CHF) (15 females and 28 males, average 55.5
108103-2
years), and a group of nine subjects with atrial fibrillation
(AF). All subjects in the healthy and AF groups had 2 h
recordings. The CHF group had longer data sets (16 to 24 h
for each subject) [6]. Here we present only the analysis for
the case m � 8; however, similar results were obtained
for m � 4 to 12.

First, we examine whether the distance for subsets of
the time series from the same subject is closer than that
for the time series from different subjects under similar
physiologic states. We divide each subject’s time series
into two subsets and measure the distance between these
two subsets. We also calculate the distance between each
pair of subjects who belong to the same group (Table I).
Our results show that the intrasubject distances are in-
deed smaller than the intragroup distances. The small
intrasubject distances indicate that there are unique dy-
namical patterns associated with each individual at small
time scales. The only exception is for the AF group. It is
difficult to distinguish one AF subject from another based
on our rank order distance. This result is consistent
with previous studies showing that, on small time scales
( � 200 s), heart rate fluctuations of AF subjects do not
exhibit consistent structures [7].

Next, we measure the average distance between sub-
jects across different groups. We notice that distances
between subjects across groups are typically greater
than distances between subjects within a group. This
result supports the notion that there are dynamical
patterns for different physiologic/pathologic states.
However, there is overlap among groups. To simplify the
picture, we define the intergroup distance of groups A and
B as the average distance between all pairs of subjects
where one subject is from group A and the other subject is
from group B. We calculate the intergroup distances
among all groups of our databases as well as a group of
108103-2



TABLE I. Distance measurement of 8-bit words. The intra-
subject results are average distances measured between two
subset time series from the same subject. The intragroup results
are the average distances between two different subjects from
the same group. Values are given as mean 
 standard deviation.
The intrasubject distances are significantly lower (p < 10�4 by
t test) than the intragroup distances in all groups except for the
atrial fibrillation group (p � 0:8).

Intrasubject Intragroup

Healthy young 0:056
 0:050 0:161
 0:106
Healthy elderly 0:077
 0:052 0:209
 0:110
Congestive heart failure 0:053
 0:047 0:100
 0:062
Atrial fibrillation 0:046
 0:015 0:045
 0:012
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100 artificial time series of uncorrelated noise (white
noise group).

The method for constructing phylogenetic trees [8] is a
useful tool to present our results since the algorithm
arranges different groups on a branching tree to best fit
the pairwise distance measurements. In Fig. 3 we show
the result of a rooted tree for the case of m � 8 [9]. We
note that the structure of the tree is consistent with the
underlying physiology: the farther down the branch the
more complex the dynamics are. The groups are arranged
in the following order (from bottom to top shown in
Fig. 3): (i) The time series from the healthy young group
represents dynamical fluctuations of a highly complex
integrative control system. (ii) The healthy elderly group
represents a slight deviation from the ‘‘optimal’’ youthful
state, possibly due to the decoupling (or dropout) of
components in the integrative control system [10]. (iii)
Severe damage to the control system is represented by the
CHF group. These individuals have profound abnormal-
ities in cardiac function associated with pathologic alter-
ations in both the sympathetic and the parasympathetic
control mechanisms that regulate beat-to-beat variability
D=0.1

White noise

Atrial fibrillation

Congestive heart failure

Healthy elderly

Healthy young

FIG. 3. A rooted phylogenetic tree generated according to the
distances between different groups. White noise indicates a
simulated uncorrelated random time series. The distance (D)
between any two groups is the summation of the horizontal
lengths along the shortest path on the tree that connects them.
For example, the distance is 0.211 between healthy young and
healthy elderly groups.
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[11]. (iv) The AF group is an example of a pathologic state
in which there appears to be very limited external input
on the heartbeat control system. (v) The artificial white
noise group represents the extreme case in that only noise
and no signal is present.

A further application of the rank order distance con-
cept is to quantify the degree of nonrandomness. To this
end, we generate the surrogate time series by random
shuffling of the original time series. Random shuffling
of the data yields exactly the same distribution of the
original interbeat intervals sequence, but destroys their
sequential ordering. The distance defined in Eq. (2) be-
tween an interbeat interval time series and its randomized
surrogate provides an index of the nonrandomness of the
time series. Here we present some intriguing results by
applying this nonrandomness index. Figure 4(a) illus-
trates a heartbeat interval time series from a healthy
subject showing complex variability. In contrast, a time
series from a CHF subject [Fig. 4(b)] shows less varia-
bility. For healthy subjects, the rank map between each
original signal and its randomized surrogate shows prom-
inent scatter [Fig. 4(c)]. The nonrandomness index mea-
sured here is 0.31. In contrast, heart rate dynamics with
CHF show rank maps with relatively narrow distributions
[Fig. 4(d)] indicating that fluctuations in CHF are closer
to random (nonrandomness index � 0:10).

Next, we calculate nonrandomness distances that cor-
respond to different word lengths, m, ranging from 2 to
12. Figure 5 shows the result for m � 8. For healthy and
Beat numberBeat number
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FIG. 4. Representative interbeat time series for (a) a healthy
subject, and (b) a subject with congestive heart failure (CHF).
(c) Rank order comparison of the time series in (a) and its
randomized surrogate. (d) Rank order comparison of the time
series in (b) and its randomized surrogate. The narrower
scattering of (d) compared to (c) implies that heartbeat fluctu-
ations in the congestive heart failure subject are more compa-
rable to random than that of the healthy subject. Both (c) and
(d) are results for the case m � 8.
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FIG. 5. Nonrandomness index (m � 8) of the interbeat inter-
val time series derived from healthy young and elderly sub-
jects, subjects with congestive heart failure (CHF), subjects
with atrial fibrillation (AF), and artificial time series of un-
correlated noise. Values are given as mean 
 standard devia-
tion.
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CHF subjects, there are significant differences (p <
10�4) in this nonrandomness index over the entire range
of m studied. However, the nonrandomness distance of
the healthy young group is only significantly higher
than that of the healthy elderly group at the scale m � 3
(p < 0:05), suggesting a preservation of most of the non-
random features of heart rate dynamics with physiologic
aging. Subjects with AF also show significantly higher
values of the nonrandomness index than white noise over
the range of 5 � m � 9 (p < 10�4). Therefore, even on
small time scales, our method can effectively discrimi-
nate certain data sets of the AF group from white noise,
whereas conventional methods have not been successful
in this regard.

Another attractive feature of rank order statistics is that
the method is useful in examining the details of the
underlying dynamics. For example, our nonrandomness
test indicates a significant difference between AF and
uncorrelated noise. We can further analyze the rank num-
bers of the ‘‘words’’ that contribute to this difference from
white noise. The assumption is that if a word dramatically
changes its rank after randomization (shuffling), the fluc-
tuations mapped by this word may not be random and
could contain relevant structural information. After sys-
temically reviewing all AF recordings, the words that are
significantly different from random sequences, occurring
in a subset of these subjects, are given as (00100100),
(00110001), (00101000), and (01000100). This finding
suggests hidden structural organization in the short-
term variation of the ventricular rhythm in AF. These
sequences need further systematic analysis, in conjunc-
tion with information from intracardiac electrophysio-
logic studies, to elucidate the mechanism of the
ventricular response to AF in different settings.

In summary, we introduce a quantitative metric to
define distances among symbolic sequences. In applica-
108103-4
tion to the heart rate time series, this approach provides
new quantitative information that is not measured by
conventional heart rate variability techniques [12]. The
method can be easily adapted to other physiologic and
physical time series provided that a meaningful mapping
to symbolic sequences can be obtained. Finally, this new
linguistic-type method is potentially useful because of its
ability to take into account both macroscopic structures
and the microscopic details of the dynamics.
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