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Self-Similar Tip Growth in Filamentary Organisms
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The growth of a family of filamentary microorganisms is described in terms of self-similar growth at
the tip which is driven by pressure and sustained by a wall-building growth process. The cell wall is
modeled biomechanically as a stretchable elastic membrane using large-deformation elasticity theory.
Incorporation of geometry dependent elastic moduli and a self-similar ansatz shows how these
equations can generate realistic tip shapes corresponding to a self-similar expansion process.
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FIG. 1. Time lapsed sequence of hyphal growth of
Streptomyces coelicolor A3(2). Each image is 150 sec apart
are probably transported to the tip by some form of
diffusive process. In the case of fungi, the role of turgor

(bar is 1 �m). Images collected courtesy Arizona Research
Laboratory.
Tip growth and the evolution of fingerlike and filamen-
tary structures, such as occur in the Hele-Shaw cell and
dendritic growth, have long been topics of interest in
condensed matter physics [1]. The purpose of this Letter
is to describe a family of microorganisms, the prokary-
otic actinomycetes, that grow as fingerlike structures in
which the growth activity is concentrated at the tip.
Analogies with the above-mentioned physical problems
are tantalizing but, as will be described, the growth
process requires very different modeling assumptions.

An important member of the actinomycete family are
the streptomycetes which are of great interest in the
pharmaceutical industry because of their ability to gen-
erate antibiotics. In a typical growth cycle, spores bud
into long filamentary hyphae which grow in and on the
nutrient surface. The hyphae undergo branching and a
dense colony is gradually formed. This phase is usually
referred to as the vegetative growth phase. The antibiotics
are produced in a subsequent aerial growth phase.
Experimental studies [2] have clearly demonstrated that
the vegetative growth is apical, i.e., occurs at the tip of the
hyphae through a complex process in which wall-building
polymers are incorporated into the tip which is stretched
by the turgor pressure generated by the cytoplasm inside
the cell. As the tip is continually stretched and ‘‘rebuilt,’’
the more distant portions of the hyphal wall rigidify. The
net result is a (steadily) propagating fingerlike structure.
A typical time-lapsed hyphal growth sequence is shown
in Fig. 1.

A typical streptomycete filament, such as Streptomyces
coelicolor, is less than 1 �m in diameter and can grow to
lengths of 50–100 �m in the vegetative phase. Another
broad family of microorganisms, the eukaryotic fungi—
which are typically an order of magnitude bigger than
the actinomycetes—are also observed to undergo apical
hyphal growth. However, as eukaryotes, they have a much
more complex internal cell structure and different wall
composition than the actinomycetes. For the latter organ-
isms, it is generally accepted that turgor pressure is the
primary driving force and that wall-building materials
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pressure is still being debated [3] and the cytoskeleton
almost certainly plays some role in straining the cell
membrane and transporting the wall-building materials
to the tip.

The modeling of tip growth in both families of organ-
isms has inevitably been a topic of interest for some
time. Most models have been geometric in nature, at-
tempting to balance the increase in wall area of an ad-
vancing membrane ‘‘front’’ with the incorporation of
wall-building material. Some of these models [4] assume
a given tip shape and others attempt to deduce it in the
particular case of fungal growth [5]. Other models for
actinomycetes [6], based on the Young-Laplace law for
membranes, suggest connections between experimentally
observed tip shapes and their material properties.
However, the common feature of these approaches is
that they either assume, or attempt to identify, an explicit
form for the tip shape. Here we concentrate on the turgor
pressure driven apical growth of actinomycetes and, using
large-deformation elasticity theory [7], develop a self-
consistent biomechanical model in which the cell wall is
modeled as a stretchable and growing elastic membrane
with geometry dependent moduli. Our results show that
there is not so much one special tip shape but rather that
the tip expansion is essentially self-similar. Governing
equations for such self-similar tip shapes are derived and
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solved numerically and analytically. We comment that
other modeling approaches, such as the use of curve
dynamics techniques that have been applied to the physi-
cal problems mentioned at the beginning of this Letter,
are attractive but must be treated with caution when
trying to model the real biological process. This topic is
explored elsewhere [8].

In our model, the filament is assumed (as it is in all the
earlier models cited above) to be in the form of an
axisymmetric surface of revolution. Distance along the
membrane is parametrized in terms of the material coor-
dinate, �, and the shell itself is characterized by the two
variables r � r��� and � � ���� as shown in Fig. 2. The
deformation of the membrane is described by the two
deformation order parameters,

�’ �
r���
r0���

; �s �
ds
d�

;

where �’ measures the radial expansion of a given mate-
rial point with respect to the reference configuration r0,
and the metric �s measures the longitudinal extension of
that point under deformation. Before deformation or
growth, the material parameter � is identified with the
arclength. Obviously, �s � 1 corresponds to no longitu-
dinal stretching of the membrane.

If ts and t’ are, respectively, the longitudinal (in the
direction of increasing arclength) and latitudinal (in
the direction of increasing azimuthal angle) tensions on
the surface, the equations of mechanical equilibrium for a
surface of revolution, in which shearing and bending
moments are neglected, are [9]

dr
d�

� �s cos�; (1)

dts
d�

� �s
cos�
r

�t’ � ts� � �; (2)

P � �sts � �’t’; (3)

where � denotes any externally imposed surface stresses
(henceforth taken to be zero). The last of these equations
represents a generalized form of the Young-Laplace law
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FIG. 2. Shell coordinate system for an axisymmetric shell.
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for a membrane with principal curvatures �s � d�=ds
and �’ � sin�=r supporting a pressure difference P.
The description of the curve geometry can be completed
by integrating the additional equation dz=d� � �s sin�.
In large-deformation theory, the strains e�� for the
axisymmetric configuration are quadratic functions of
the deformation parameters, namely, ess � ��2

s � 1�=2,
e’’ � ��2

’ � 1�=2, and here the stresses ts and t’ are
assumed to follow the equivalent of a linear constitutive
relationship of the form

ts � a��2
s ���2

’ � �1����; (4)

t’ � a��2
’ ���2

s � �1����; (5)

where � measures the ratio of azimuthal and longitudinal
stretching and a is an effective elastic modulus for the
membrane. An important part of this study is to allow it
to be geometry dependent, i.e., a � a���. More complex
forms of constitutive relationship can be used (as in
studies of red blood cells [10]) but, given the current
lack of detailed information about the elastic properties
of actinomycete membranes, a linear relationship is
more than adequate for the ensuing demonstration of
self-similar expansion.

In the case of constant pressure P, the system (1)–(3)
admits the conserved quantity

C � r2�2ts�’ � P�; (6)

where, for all solution �r���; ����� crossing the z axis,
C � 0. Taking advantage of this quantity enables us to
reduce the third order system to the closed second order
system for the shell shape, namely,

dr
d�

� �s cos�; (7)

d�
d�

�
��s

r
sin��r2 � r20�1���1� �2

s��� � prr20
r2�� r20�1��� �2

s�
; (8)

where p � P=a is an effective pressure and, assuming
C � 0, �2

s � 1���1� �r=r0�
2� � rp=�2 sin��.

Experimental results [11] clearly demonstrate that
growth in actinomycetes takes place in the apical (tip)
region where the cell wall is softer. This is modeled
biomechanically by using a material dependent elastic
modulus a � a���. The published data on the rate of
incorporation of tritiated N-acetyl D-glucosamine in the
tip region of S. coelicolor A3(2) [11] can be fitted [12] by
the following function, displayed in Fig. 3:

p � 1
2Af1� tanh���� �1�=��g � �; (9)

where the parameters �1 and � characterize the extent of
the apical extension zone. The parameter � is a small
number which describes the effective pressure far from
the tip, whereas A� � gives the effective pressure at
the tip.

During growth, the wall of the filament is regener-
ated by the incorporation of wall-building polymers
108101-2
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FIG. 3. The effective pressure P=a (solid line). Close to the
tip (apical region), the effective pressure is high and drops off
away from the tip (distal region). The idealized profile used for
the theoretical analysis is shown with a dashed line.
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transported to the tip. The addition of new material
allows the membrane to be further stretched by the turgor
stresses. This effect can be simulated by taking the de-
formed membrane as a new reference configuration sus-
ceptible to elastic deformation. Mathematically, this
growth process is achieved by simply translating the
arclength of the (quasiequilibrium) extended configura-
tion into the new material coordinate. Thus, we start
with an initial shape defined by the function r0���, 0 

� 
 L0, and compute the new shape r��� from (7) and (8)
subject to the boundary condition r�L0� � R0; r�0� � 0.
The new shape r��� represents the new mechanical equi-
librium of the membrane which is then translated into the
‘‘next’’ reference shape r1��� � r�s�, where s � s���with
0 
 � 
 L1 � s�L0�. A new mechanical equilibrium
with boundary conditions r�L1� � R0; r�0� � 0 is then
calculated, and the growth process is repeated.

A typical computation using Eqs. (7)–(9) shown in
Fig. 4 illustrates the fundamental point that the tip shape,
once established, is effectively self-similar, i.e., away
from the fixed boundary and at each step the new shape
is, essentially, an affinely translated duplicate of the
previous one. The above results suggest the possibility
of self-similar shell stretching and here our goal is to
show how the shell equations can be developed in such a
way as to produce this type of expansion. This is achieved
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FIG. 4. A growth sequence obtained from an initial spherical
shape (� � 1=2, �1 � �=2, � � 10�6, P � A � 1, � � 1=8,
L1 � �=3, 200 iterations, every four shown).
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by adopting a picture in which self-similar tip growth is
one in which the ‘‘final’’ tip shape, r���, is of the same
functional form as the initial ‘‘reference’’ configuration
r0���. The key idea, as illustrated in Fig. 5, is quite
simply to set

r��� � r0�s����: (10)

That is, after expansion the value of the radial variable,
r, for a given material point � is required to be
the value of r0 evaluated at the new position of that point,
expressed in terms of arclength, along the shell. The
angular deformation variable, �’, now takes the
form �’ � r0�s����=r0���. This form is well suited for
hyphal growth since far from the tip we expect to see,
effectively, no material stretching and, hence, �’ �
lim�!1 r0�s����=r0��� 
 r0���=r0��� � 1. It is impor-
tant to note, however, that the functional relationship
(10) is nonlocal since the arclength s��� is determined
by integration of the metric along the curve up to the
given point �.

However, this self-similar ansatz maybe explored ana-
lytically in a quite straightforward way by simply ex-
panding all the dependent variables in Taylor series of the
form

r�
X1

i�2

ri�i; ��
X1

i�1

�i�i; s�
X1

i�1

si�i; r0�
X1

i�2

�i�i:

(11)

Substitution of these expansions into the system (7) and
(8) together with the constraint (10) yields a closed set of
algebraic relationships for the expansion coefficients.
Here, for computational simplicity, we use a simpler
renormalized pressure field and choose a limiting form
of (9), namely, p�pmax, 0
�
�1; p�0, �>�1,
thereby making the membrane completely rigid outside
the apical expansion zone 0
�
�1. The outer profile is
then a cylinder of radius r��1� and we can solve for the
inner solution. The equations for the coefficients of the
Taylor series are closed by requiring that the inner and
outer solutions match, that is, ���1���=2. A typical
computation of a self-similar solution is shown in Fig. 6.
The closeness of the self-similar solution to the growing
solution is striking. The analysis of the self-similar pro-
file for various values of the physical parameters (size of
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FIG. 5. Self-similar growth ansatz.
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FIG. 6. Comparison of growing membrane profile with self-
similar solution. The outermost profile is obtained numerically
(in similar fashion as the profiles obtained in Fig. 4 but for � �
1=2, �1 � �=6, P � A � 1, � � 1=64, � � 10�2). The inner
profile (dashed line) corresponds to the self-similar solution
with the same parameter values.
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FIG. 7. Curvature at the tip for the self-similar solution
(�1 � �=6) as a function of the ratio of elastic moduli �
with p � 1 constant (dashed line) and as a function of the
turgor pressure p at constant �.
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extension zone �1, ratio of elastic moduli �, and effective
pressure p) reveal that there is no universal tip shape that
can be fitted to all growing fingers. For instance, the
curvature at the tip (given by �1=�1) varies with all
parameters but especially with pressure and elastic mod-
uli (see Fig. 7). Other computations (not shown here) with
variants of the effective pressure field all show the same
phenomenon of self-similar behavior. The analytical so-
lutions determined by the use of the expansions (11) in the
governing Eqs. (7) and (8) are self-similar by imposition
of the constraint (10). That the numerical solutions
(shown in Fig. 4) generated by the original system (7)
and (8) plus growth, but without imposition of (10),
exhibit self-similar tip propagation is a reflection of the
form of the effective pressure profile (9). If this form is
modified to allow for a very ‘‘soft’’ tip, apical swelling is
observed. This effect is, in fact, consistent with the ob-
served phenomenon of lysis which occurs when certain
enzymes strip the cell wall structure. (A further discus-
sion of lysis within the framework of our model is given
in [12]).

The modeling of vegetative actinomycete growth de-
scribed here indicates that the use of large-deformation
theory for elastic membranes (which has been used suc-
cessfully for studying red blood cell deformation [13])
can provide a satisfactory biomechanical description of
pressure driven apical growth. The use of geometry de-
pendent moduli appears capable of providing a biophysi-
cally plausible representation of the long-held observation
that the ‘‘softest’’ portion of the organism—and, hence,
the most susceptible to expansion—is at the tip. This,
coupled with a simple mathematical representation of
108101-4
growth through surface reparametrization, enables a
simulation of continuous, self-similar, tip expansion that
is a realistic depiction of the experimental observations.
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