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We study the influence of quenched disorder on quantum phase transitions in systems with over-
damped dynamics. For Ising order-parameter symmetry disorder destroys the sharp phase transition by
rounding because a static order parameter can develop on rare spatial regions. This leads to an
exponential dependence of the order parameter on the coupling constant. At finite temperatures the
static order on the rare regions is destroyed. This restores the phase transition and leads to a double-
exponential relation between critical temperature and coupling strength. We discuss the behavior based
on Lifshitz-tail arguments and illustrate the results by simulations of a model system.
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The influence of quenched disorder on phase transitions
is an important problem in condensed matter physics.
Initially it was suspected that disorder destroys any criti-
cal point [1]. However, it was soon found that classical
continuous phase transitions generically remain sharp in
the presence of weak disorder. If a clean critical fixed
point (FP) fulfills the Harris criterion [2] ¥ = 2/d, where
v is the correlation length exponent and d is the spatial
dimensionality, weak disorder is renormalization group
irrelevant. The system becomes asymptotically homoge-
neous at large length scales. Even if the Harris criterion is
violated, the transition will generically be sharp. In this
case the inhomogeneities either remain finite at all length
scales, leading to a finite-disorder FP, or the relative
magnitude of the disorder diverges under coarse graining
corresponding to an infinite-randomness FP. A prominent
example of the latter occurs in the McCoy-Wu model [3],
a disordered 2D Ising model in which the disorder is
perfectly correlated in one dimension. These correlations
increase the effects of the disorder.

An important aspect of phase transitions in disordered
systems are the Griffiths phenomena [4]. They are caused
by large spatial regions that are devoid of any impurities
and can be locally in the ordered phase even if the bulk
system is in the disordered phase. Since these regions are
of a finite size, no true static order develops. The fluctua-
tions of these regions are very slow because they require
changing the order parameter in a large volume. Griffiths
[4] showed that this leads to a singular free energy. In
generic classical systems this is a weak effect, since the
singularity is only an essential one. An exception is the
McCoy-Wu model [3]. Here, the disorder correlations lead
to stronger effects, with the average susceptibility diverg-
ing in a finite region of the phase diagram.

Recently disorder effects have gained a lot of attention
in the context of quantum phase transitions [5]. At these
transitions order-parameter fluctuations in space and time
have to be considered. Quenched disorder is time inde-
pendent; it is thus always correlated in one of the relevant
dimensions making disorder effects at quantum phase
transitions generically stronger than at classical transi-

107202-1 0031-9007/03/90(10)/107202(4)$20.00

PACS numbers: 75.40.—s, 75.10.Lp, 05.70.Jk

tions. A prototypical model is the random quantum Ising
ferromagnet. Its quantum phase transition in 1D [6—8]
and 2D [9,10] is controlled by an infinite-randomness FP
with activated rather than power-law dynamical scaling.
The Griffiths singularities are enhanced, too: Several
observables including the average susceptibility display
power-law singularities with continuously varying expo-
nents over a finite region of the disordered phase. Similar
phenomena have also been found in quantum Ising spin
glasses [11-13].

The systems in which infinite-randomness FPs and
quantum Griffiths phenomena have been shown unam-
biguously all have undamped dynamics (a dynamical
exponent z = 1 in the corresponding clean system). How-
ever, in itinerant electronic systems the order parameter
couples to fermionic modes leading to overdamped dy-
namics (clean dynamical exponent z > 1). A prototype
example is the itinerant quantum antiferromagnetic phase
transition. The conventional perturbative renormalization
group for this transition [14] yields a finite-disorder FP.
However, by taking into account the effects of rare re-
gions it was shown [15] that this FP is unstable, and the
renormalization group flow is towards large disorder. The
meaning of this runaway flow is presently not fully under-
stood. In addition to the transition itself, quantum
Griffiths phenomena in itinerant systems have also at-
tracted much attention since they are of potential impor-
tance for a variety of heavy-fermion systems. It has been
suggested [16] that overdamped systems show quantum
Griffiths phenomena very similar to that of undamped
systems. However, recently it has been argued [17] that
for Ising symmetry the overdamping prevents the rare
regions from tunneling leading to superparamagnetic
rather than quantum Griffiths behavior [18].

In this Letter we reconsider the important question of
disorder and rare regions at quantum phase transitions.
We show that for Ising order-parameter symmetry and
Landau overdamped dynamics, the sharp quantum phase
transition is destroyed by rounding, because static order
can develop on isolated rare regions. Our results can be
summarized as follows: The relation between the order
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parameter m and the distance ¢ from the clean critical
point is exponential for small m. The precise form de-
pends on the disorder distribution. For a Gaussian cou-
pling constant distribution, m is finite for all z.
Asymptotically it behaves as

log(m) ~ —12~4/¢  for t — co. (1a)

Here ¢ is the finite-size scaling shift exponent of the
clean system. If the disorder is of a dilution type a finite
order parameter starts to develop at the clean transition,
i.e., for + <0 [19]. For small |¢] it behaves as

log(m) ~ —|t|=#* fort—0—. (1b)

At finite temperatures the static order on the rare regions
is destroyed, and a finite interaction between them is
required for long-range order. This restores a sharp phase
transition. The dependence of the critical temperature on ¢
is double exponential. For small 7. we obtain

log(—alogT,) ~ 2~4/¢
log(—alogT,) ~ |t|=/*

Gaussian, (2a)
dilution. (2b)
Moreover, in finite-size samples strong sample-to-sample
fluctuations occur if the number of rare regions display-
ing static order becomes of the order of 1. Asymptotically
for large linear system size L, the coupling strength ¢; at
which these fluctuations start behaves like

tL ~ (logL)l/(z_d/¢)

lt,| ~ (logL)~#/4

Gaussian, (3a)
dilution. (3b)

Thus, finite-size effects are suppressed only logarithmi-
cally. In the remainder of this Letter, we sketch the
derivation of these results, illustrate them by numerical
results from a model system, and discuss their relevance
for experiments as well as simulations.

For definiteness we consider the antiferromagnetic
quantum phase transition of itinerant electrons with
Ising spin symmetry. The Landau-Ginzburg-Wilson free
energy functional of the clean transition reads [14,20]

S = fdxdym(x)r(x, y)m(y) + ufdxm”’(x). 4)

Here x = (x, 7) comprises position x and imaginary time
7,and [dx = [dx (l)/T dr. I'(x, y) is the bare two-point
vertex, whose Fourier transform is I'(q, w,,) = (t + q*> +
|w,|). Here t = (g — g.)/g. is the distance of the cou-
pling constant g from the critical point. The dynamical
part of T is proportional to |w, | reflecting the overdamp-
ing of the dynamics (undamped dynamics leads to w?).
Quenched disorder is introduced by making ¢ a random
function of position, t — t + 8#(x). We consider two dif-
ferent disorder distributions. The first is a Gaussian dis-
tribution with zero mean and a correlation function
(81(x)8t(y)y = A?8(x —y). The second disorder distribu-
tion is of a dilution type, 8#(x) = 0 everywhere except on
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randomly distributed finite-size islands (impurities) of
spatial density ¢ where 8#(x) = W > 0.

In the presence of disorder there are rare large spatial
regions which are locally in the ordered phase while the
bulk system is not. For the Gaussian disorder distribution
which is unbounded, these regions exist for all ¢. For the
dilution case they appear below the transition of the clean
system, i.e., for ¢t < 0. At zero temperature a single such
region is equivalent to a classical Ising model in a rodlike
geometry. It is finite in the d space dimensions but infinite
in imaginary time. If the interaction in the time direction
is short ranged, as is the case for undamped dynamics,
true static order cannot develop on such a rare region.
Instead, the order parameter displays slow fluctuations
leading to quantum Griffiths phenomena. This is drasti-
cally different in a system with overdamped dynamics.
The linear frequency dependence in I is equivalent to a
long-range interaction in the time of the form (7 — 7/) 2.
1D Ising models with 1/r* interaction are known to
develop long-range order at finite temperatures [21].
Thus, in our quantum system, true static order develops
on those rare regions which are locally in the ordered
phase. In agreement with Ref. [17] we therefore do not
find the usual quantum Griffiths phenomena. Once static
order has developed on a few isolated rare regions, an
infinitesimally small interaction or an infinitesimally
small symmetry-breaking field are sufficient to align
them. Consequently, a macroscopic order-parameter
arises.

We now use Lifshitz-tail arguments [22] to derive the
leading thermodynamic behavior for small order pa-
rameter m. In the dilution case, the probability w to
find a region of linear size Ly devoid of any impurities
(8¢t = 0) is given by w ~ exp(—cL%) (up to preexponen-
tial factors). Such a rare region develops static order at
some #.(Lg) <O. Finite-size scaling yields |7.(Lg)| ~
L,;"S where ¢ is the finite-size scaling shift exponent of
the clean system [23]. Thus, the probability for finding a
rare region which becomes critical at .. is given by

w(t.) ~exp(—Bl|t,|74%) fort— 0—. (5a)
For a Gaussian distribution similar arguments [24] give
w(t,) ~ exp(—B£2~?) for t — . (5b)

Here B and B are constants. The total order parameter m
is obtained by integrating over all rare regions which are
ordered at ¢, i.e., all rare regions having ¢, > t. This leads
to Egs. (1a) and (1b). Note that the functional dependence
on t of the order parameter on a given island is of a power-
law type and thus only influences the preexponential
factors.

At finite temperatures the static order on the rare re-
gions is destroyed, and a finite interaction of the order of
the temperature is necessary to align them. This means a
sharp phase transition is recovered. To estimate the tran-
sition temperature we note that the interaction between
two rare regions depends exponentially on their spatial
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distance r, E;,, ~ exp(—r/&;), where &, is the bulk cor-
relation length. The typical distance r itself depends ex-
ponentially on 7 via r ~ w™ /4. The leading dependence of
the critical temperature 7, on ¢ is thus

T, ~ exp(—r/&) ~ exp(—aw™ 4/ &), (6)

where a is a constant. Inserting Eqgs. (5a) and (5b) for w
leads to Egs. (2a) and (2b). Above this exponentially small
critical temperature the rare regions essentially behave
classically.

We now turn to finite-size effects at zero temperature.
Since the total order parameter is the sum of contribu-
tions of many independent islands, finite-size effects in a
macroscopic sample are governed by the central limit
theorem. However, for t — oo (Gaussian distribution) or
t — 0— (dilution) very large and thus very rare regions
are responsible for the order parameter. The number N of
rare regions which start to order at ¢ in a sample of size L
behaves like N ~ L%w(t,). When N becomes of the order
of 1, strong sample-to-sample fluctuations arise. Using
Egs. (5a) and (5b) for w(r,) leads to Egs. (3).

To illustrate the rounding of the transition we now show
numerical data for a model system, viz., a classical Ising
model with two spatial and one timelike dimensions. The
disorder is of a dilution type and totally correlated in the
time direction. The interaction is short ranged in space
but infinite ranged in time. This simplification retains the
crucial property of static order on the rare regions but
permits system sizes large enough to study exponentially
rare events. The Hamiltonian reads

1 1
H= _L_ Z SX,TSy,T’ - L_ Z JXSX,TSX,T/‘ (7

Ty Tx77

Here x and 7 are the space and time coordinates, respec-
tively. L, is the system size in the time direction and {x, y)
denotes pairs of nearest neighbors. J, is a quenched
binary random variable with the distribution P(J) =
(1 =¢)6(J — 1) + ¢6(J). In this classical model L, takes
the role of the inverse temperature in the corresponding
quantum system and the classical temperature takes the
role of the coupling constant g. Because the interaction is
infinite ranged in time, the timelike dimension can be
treated in mean-field theory. For L, — oo, this leads to a
set of coupled mean-field equations (one for each x)

/
my, = tanhB|:]XmX + > my + h} (8)

y(x)

where h = 1078 is a small symmetry-breaking mag-
netic field. Equation (8) is solved numerically in a self-
consistency cycle.

Figure 1 shows the total magnetization and the suscep-
tibility (corresponding to the inverse energy gap of the
quantum system) as functions of temperature for linear
size L = 100 and impurity concentration ¢ = 0.2. The
data are averages over 200 disorder realizations [25]. At
first glance these data suggest a sharp phase transition
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FIG. 1. Magnetization and susceptibility (L = 100, c = 0.2).

close to T = 4.88. However, a closer investigation, Fig. 2,
shows that the singularities are rounded. If this rounding
were a conventional finite-size effect the magnetization
curve should become sharper with increasing L and the
susceptibility peak should diverge. This is not the case
here; instead the transition remains rounded for L — oo.

For comparison with the analytical results, Fig. 3 shows
the logarithm of the average magnetization as a function
of 1/(T? — T) where T? = 5 is the critical temperature of
the clean system (¢ = 0). The data follow Eq. (1b) over
almost 4 orders of magnitude in m with the expected shift
exponent of ¢ = 2. This figure also shows “typical,” i.e.,
logarithmically averaged magnetization data for different
system sizes. Deviations between the typical and the
average values (which are essentially size independent)
reflect strong sample-to-sample fluctuations. The data
show that the onset 7, of these fluctuations shifts to
larger temperatures with increasing system size. A more
detailed analysis shows that t, = (T, — T?) follows
Eq. (3b) in good approximation.

In the remaining paragraphs we discuss the generality
of the results and their consequences for experiments and
simulations. The rounding of the transition is due to the
fact that at zero temperature static order can develop on a
finite spatial region in a Landau-damped system. We thus
expect all quantum phase transitions with discrete order-
parameter symmetry and overdamped dynamics (i.e., a
low frequency dependence ~|w| or slower in the Gaussian
propagator) to be rounded by disorder. Systems with
continuous symmetry behave differently. It is known
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FIG. 2. Magnetization and susceptibility close to the seeming
transition for different system sizes.
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FIG. 3. log(m) as a function of distance from the clean
critical point. The solid line is a fit of the average magnetization
to Eq. (Ib) with ¢ = 2. The logarithmically averaged data
show the onset of the sample-to-sample fluctuations.

[26] that classical 1D XY and Heisenberg systems develop
long-range order at finite 7 only if the interaction falls off
more slowly than 1/r?. Consequently, in a quantum sys-
tem at zero temperature static order on a rare region
develops only if the frequency dependence in the Gauss-
ian propagator is slower than |w|. The itinerant ferromag-
netic or antiferromagnetic quantum phase transitions
with XY or Heisenberg symmetries will thus remain
sharp in the presence of disorder [27].

The rounding of the quantum phase transition leads to
an unusual phenomenology in experiments. Data at larger
order parameter and not too low temperature do not
resolve the exponentially small order-parameter tail but
probe the rounded transition. With increasing precision
and decreasing temperature the apparent critical point
shifts towards the disordered phase, accompanied by
strong sample-sample fluctuations. Similar effects will
also occur in simulations. In a recent Monte Carlo simu-
lation of a related model [28] a sharp transition was found
controlled by an infinite-randomness fixed point. How-
ever, in this simulation the linear system sizes are below
L = 30, thus it likely probes the rounded transition rather
than the exponential magnetization tail.

In this Letter we have concentrated on the behavior of
the system for very small order-parameter values, i.e., in
the ““tail region” of the rounded transition. The above
arguments suggest that the properties of the rounded
transition itself are experimentally also very important
because they control the behavior in a wide preasymptotic
region. However, these properties are likely to be nonuni-
versal, and so far they are not very well understood.
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