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Inductance of rf-Wave-Heated Plasmas
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The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of
fast electrons located in a plateau during their acceleration due to electric field or deceleration due to
collisions and electric field. This inductance has been calculated for small electric fields from the two-
dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv2ph=2 in the
velocity space. The new expression may be important for radio-frequency current drive ramp-up,
current drive efficiency, current profile control, and so on in tokamaks. This inductance may be
incorporated into transport codes that study plasma heating by rf waves.
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current drive can be significant, not only because of the (1)
Using radio-frequency waves for the generation and
sustainment of plasma current in tokamaks has been of
considerable interest, both in theory and in experiment.
Radio-frequency waves have proved capable of driving
the current necessary for the stability of tokamak plas-
mas, without any contribution from the dc electric fields
[1]. The noninductive current drive effect is due to the
asymmetric decrease of the electron collision rate caused
by resonant absorption of rf power. The same decrease
also implies an enhancement of the electrical conductiv-
ity [2] that is measured in some experiments [3,4]. This
induced conductivity shows a nonlinear behavior in large
electric fields and can represent the plasma as an active
element [5]. On the other hand, the rate of change of the
current drive can be significant, not only because of
runaway acceleration by the electric field, but also be-
cause of deceleration by collisions. This causes an addi-
tional plasma inductance which can be important in
studying plasma heating by radio-frequency waves. This
is an induced inductance caused by radio-frequency heat-
ing of plasma and it is deeply different from a change of
internal inductance due to a change of radial current
profile in radio-frequency heating regimes that is ob-
served in experiments [6].

Let us begin by explaining a physical picture. First
assume a current drive regime that electrons have been
moved due to radio frequency. Then consider that a par-
allel electric field is applied in the opposite direction of
the electron movement. Therefore, the electrons can be
accelerated by this field to a high enough energy that they
overcome the dynamic frictional force of collisions. If the
velocity domain V is large, then an electron accelerated
from the bulk of the distribution to the boundary may be
deemed a runaway, because frictional forces are ex-
tremely unlikely to return this electron to the velocity
domain V. This will arise when the electric field is large
enough. If the parallel electric field is applied in the same
direction as the electrons, the electrons can be deceler-
ated due not only to collisions but also the electric field to
the thermal energy. However, the rate of change of the
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electron acceleration by the electric field, but also because
of the electron deceleration by the electric field and col-
lisions, calculated from the Fokker-Planck equation as
the flux crossing the surface of critical energy mv2ph=2 in
the velocity space, resulting in a large rate of change of
high-energy current carries. In short, this effect intro-
duces a plasma inductance which can significantly affect
the current drive regimes in toroidal devices.

To estimate this inductance, a two-dimensional
Fokker-Planck equation has been used. Presently, we
will find an analytical solution using a perturbation tech-
nique. This solution will provide a useful approximation
for small electric fields. These small electric fields may
accelerate or decelerate the electrons according to their
direction relative to electron direction in the current
drive. Since the electric field is small in our model, the
electrons finally will be decelerated to the thermal energy
due to collisions. In the case when the phase velocity is
larger than runaway velocity (vph > vr �
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m�=qE
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where � � nq4 ln�=4
�20m
2), the resonance electrons

located in the plateau of the distribution function will
be accelerated as runaway. This will occur in large elec-
tric fields. The more exact numerical solution for these
large electric fields by considering the runaway possibil-
ity will be numerically done in future work [7].

Consider a uniform electron-ion plasma, initially at
equilibrium. Since in rf current drive regimes the distri-
bution function of the bulk electrons remains Maxwell-
ian, the problem can be linearized by substituting f �
fm � f1 into the Boltzmann equation. This is because
most plateau electrons collide with bulk electrons rather
than with each other, since there are so many bulk elec-
trons. The Fokker-Planck equation that will occupy our
attention may be written as
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where we neglect spatial derivatives, fm �
n�m=2
T�3=2 exp���=T�, and S�v; t� is wave-induced
flux. Here q, m, n, and T are the electron charge, mass,
number density, and temperature, respectively, and � is
the energy of an electron. Here we have used the homo-
genous plasma approximation that is generally adequate
for the lower hybrid current drives, because trapped-
electron effects are small. The notational convenience
C�f1� � C�f1; fm� � C�fm; f1� � C�f1; fi� is the linear-
ized collision operator. Initially, at high speed, the cur-
rent carried by electrons is substantial; when they slow
down, they carry much smaller current and, because they
are colliding frequently by then, even this small current
persists for only a very short time. Therefore, it is a very
good approximation to assume that the collisions always
take place in the high-velocity limit, v� vT , where we
can simplify
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where� � vk=v , � � nq4 ln�=4
�20m
2, v2T � T=m, and

�0 is the dielectric constant of free space; ln� is the
Coulomb logarithm and Z is the effective ion charge state.

Since in most promising current-generation methods
the distribution function of the bulk particles remains
Maxwellian, the problem can be linearized by putting
f � fm�1� h�. As already noted, most applied problems
do not require knowledge of the distribution function
f�v; t�, since their only requirement is the knowledge of
several moments of f�v; t�. The longitudinal density of
current is expressed by

J�t� �
Z
d3vfm�v; t�h�v; t�qvk: (3)

According to Ref. [8], in the direction of applying the
adjoint method we first define a commutative operation on
the two functions h�v; �tt� and g�v; �tt�:


h; g�t �
Z
V
d3v

Z t

0
h�v; t� ��g�v; ��d�: (4)

We also introduce the notation

j�v; t; �tt� �
Z
d3 �vvg� �vv; v; t; �tt�qvk: (5)

The function j�v; t; �tt� is the influence function for the
moment J. The corresponding influence function j�v� is
the solution of the following equation:
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where C� is the operator adjoint to C and may be written
as C� � C�fmj�=fm. The current density J will be
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Equation (6) shows time dependence of current with
electric field. Note the difference between Eqs. (1) and (6)
to understand the meaning of Eq. (6). The Boltzmann
equation (1) describes the evolution of a group of elec-
trons released at t � 0 at velocity v, but j�v; t� in Eq. (6)
gives the mean current carried by those electrons at time t
later. This current is carried by f1. How Eq. (6) works is
easily seen by taking v� vr so that the electrons expe-
rience only the electric field. In the Boltzmann equa-
tion (1) the electrons have slowed down to v� ��=v2r�t
at time t. Correspondingly, in the adjoint equation (6), the
initial condition j0 � j�t � 0� is transported in the re-
versed direction so that j�v; t� � j0�v� ��=v2r�t�.

In Ref. [2], Eq. (6) has been simulated as a familiar
Ohm’s law relation J � �E for small electric fields. On
the other hand, in Ref. [5], Eq. (6) has been simulated as
J � ��E� so that conductivity is a nonlinear function of E
and it has not been limited to small electric fields. In both
references, by choosing a special stationary state solution,
the inductance effect has been deleted. However, accord-
ing to Eq. (6) the rate of change of current drive can be
significant and must be considered. Here we simulate
Eq. (6) as a simple RL circuit equation L�di=dt� �
Ri � V (where R, L, i, and V are resistance, inductance,
current, and voltage, respectively) instead of J � �E. In
another form, it will be

�a2=2R0�L
@J
@t

�
J
�
� E; (8)

where� is the conductivity of rf-wave-heated plasma that
has been obtained in Refs. [2,5]. R0 and a are the major
and minor radii of the torus, respectively.

The initial condition of Eq. (6) is j � qvk. Since the
electric field is small, after a long enough time the elec-
trons will be decelerated to the bulk �j! qvth � 0� be-
cause of collisions. The time it takes the fast electrons to
decelerate to the bulk depends on the collision operator
and may be written as v3=��5� Z� ln�vk=vT�. We inte-
grate Eqs. (6) and (8) from t � 0 to � � v3=
��5� Z� ln�vk=vT�. Accordingly, define

#�v� �
Z �

0
dtj�v; t�; (9)

where # represents the resultant displacement of a charge
having an initial velocity v (see Ref. [8]) that is the
solution of the following equation [5,8]:

fm
eE
m
@#
@vk

� C��fm#� � �fmq�v: (10)

Taking a perturbation expanding

# � #0 � E#1 � E2#2 � . . . ; (11)

we get to the lowest order
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Then the first-order equation becomes
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and, for higher orders,
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from which we may solve Eqs. (12)–(14) asymptotically
in vT=v:
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where we have assumed vT � vph. The approximated
orders of# obtained by computer may be found in Ref. [9].

Integrate Eq. (8) from t � 0 to � � v3=��5� Z� �
ln�vk=vth� to obtain the inductance as

Li � �
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This relation is obtained for a narrow spectrum of waves
that we can write J=Pd � 
S � �@#=@v��=
S � �@�=@v��,
where � and Pd are the energy of electron and the ab-
sorbed power per unit, respectively. Here �H is hot con-
ductivity of fast electrons that may be given by [2,5]

�H � Pd
S � �@#1=@v�
S � �@�=@v�

: (19)

This relation for lower hybrid waves can be written as

�H � Pd
2e2

m2�2

�2� Z� 3�2�

�5� Z��3� Z�
v4ph: (20)

Therefore, the inductance of lower hybrid wave heated
plasma will be
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This relation shows the average induced inductance
of fast resonance electrons in the time interval 0<
t < � during their deceleration. The fast electrons also
experience the usual inductance of tokamak plasma
due to the torus property of the tokamak, L �
�0R0
ln�8R0=a� �

7
4�. Therefore, the total inductance of

these fast electrons will be the summation of induced
and usual inductances, Lf � L� Li. By considering the
inductance of bulk electrons as Lb, the total inductance
of a tokamak plasma in radio-frequency heating re-
gimes will be as Ltot � Lf k Lb; thus, inductances of
fast and bulk electrons have been considered as parallel.
It is the same as the resistances of fast and bulk elec-
trons in Refs. [2,5]. In these references, the resistances of
fast (RH) and bulk (Rsp) electrons were considered as
parallel (i.e., �tot � �H � �sp) but eliminated the in-
duced inductance of fast electrons. In more exact calcu-
lation, it is better to consider two RL circuits as series
(i.e., RfLf k RspLb).

Let us investigate a sign of induced inductance. The
induced inductance is negative in the case of E � 0. It is
evident from relation (21) that when electric field E is
applied in the same direction as the electrons (i.e., E and
� have the same sign) the electrons can be decelerated
due not only to collisions but also to the applied electric
field that leads to a decrease of the inductance in rela-
tion (21). On the other hand, if electric field E is applied in
the opposite direction as the electron movement (i.e., E
and � do not have the same sign), the electrons can be
accelerated opposite of deceleration by collisions that lead
to an increase of the inductance in relation (21). In this
case, when electric field E reaches values larger than the
critical limit, 
e�2�Z�3�2�

2�m��3�Z� � ln�
vph
vth
� � 2

3 �v
2
ph�E > 1, the ac-

celeration effect due to the electric field will be dominant
compared to the deceleration effect due to collisions.
Therefore, the sign of the inductance in relation (21)
will be changed. This will occur in large electric fields
but our solution is limited to E! 0 that shows that
relation (21) is correct only for small electric fields.

In the case of E � 0, we have

Li;�E�0� � �
R0�m

2�3� Z�

Pda2e2�2� Z� 3�2�vph
: (22)

Therefore, it is seen from relation (22) that an inductance
property exists even for E � 0 but it will be significant in
the presence of electric field. For example, in a tokamak
with major parameters of R0 � 0:8m, a � 0:12m, n �
3� 1019m�3, Prf � 100 kW, * � 0:3, vph � 108=4,
Zeff � 3, the induced inductance in the absence of electric
field will be Li � �0:7 �H, but in the presence of electric
field it will be more significant. By considering the usual
inductance of these fast electrons in this tokamak as L �
2:2 �H, the total inductance of fast electrons due to
radio-frequency current drive will be Lf � L� Li �
1:5 �H. The time constant of decay for such resonance
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electrons in E � 0 may be given as L=R � v3ph=��5� Z�.
This parameter does not depend on the rf power Pd in
contrast to the inductance relations (21) and (22) and also
the conductivity relations (19) and (20) that depend on the
rf power. In the presence of electric field, the time con-
stant of fast electron decay will be dependent on E.

Let us review briefly the physical picture. Electrons
absorbing wave energy and momentum may slow down
either by colliding with the background plasma or by
decelerating under the effect of the dc electric field. As
an electron decelerates, it transfers a part of its kinetic
energy to the bulk electrons with which it collides and the
remainder of its kinetic energy to the electromagnetic
field that decelerates it. The latter energy contribution
appears as magnetic energy storage (i.e., LI2=2), while
the former contribution appears merely as heat. For small
Pd, the induced inductance effect causes a negative in-
ductance for fast electrons, which means that power flows
from the field energy into the kinetic energy of resonant
electrons because rf power is insufficient (or misdi-
rected). When the absorbed rf power Pd increases, the
induced inductance (Li) of fast electrons also increases
(i.e., jLij decreases) which causes the total inductance of
fast electron (Lf) to increase. In the case of Li � �L,
the total inductance of fast electrons will be zero (i.e.,
Lf � 0), which causes the conversion of all of the kinetic
energy of fast electrons into heat. For highPd, the induced
inductance of fast electrons tends to zero, so that the total
inductance of fast electrons will tend to L. In this re-
105003-4
gime, all of the kinetic energy of fast electrons will be
converted to magnetic field energy. Note the dependency
of induced inductance on density (�). When density in-
creases, the inductance of fast electrons decreases, so that
contributions of fast electrons to heat increase. This is
because the electron is sensitive to collisions in high
densities; therefore, collisions tend to slow down the
electron, and electron kinetic energy will be converted
to heat.
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