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Intermittency and Non-Gaussian Fluctuations of the Global Energy Transfer
in Fully Developed Turbulence
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We address the experimentally observed non-Gaussian fluctuations for the energy injected into a
closed turbulent flow at fixed Reynolds number. We propose that the power fluctuations mirror the
internal kinetic energy fluctuations. Using a stochastic cascade model, we construct the excess kinetic
energy as the sum over the energy transfers at different levels of the cascade. We find an asymmetric
distribution that strongly resembles the experimental data. The asymmetry is an explicit consequence of
intermittency and the global measure is dominated by small scale events correlated over the entire
system. Our calculation is consistent with the statistical analogy recently made between a confined
turbulent flow and a critical system of finite size.
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FIG. 1 (color online). PDF of global energy transfer for
experimental data, taken from Pinton et al. [5] (symbols) and
from cascade models of intermittency. The cascade models are
In this Letter we therefore show, using a phenomenologi-
cal model, that the observed non-Gaussian fluctuations of

the �2 model, Re � 105 and � � 2:0 (solid line) and the log-
normal model, Re � 105 and � � 1:08 (dashed line).
Intermittency is a well established feature of turbulent
flows. It has been observed in a large number of experi-
ments and incorporated in many models [1,2]. In this
Letter we attempt to link the statistics of the fluctuations
of the global energy consumption PI in a turbulent flow to
the intermittency of the energy transfer. Our motivation
stems from the empirical observation [3] that the proba-
bility density function (PDF) of power consumption PI
for a confined turbulent flow driven at constant Reynolds
number Re has a non-Gaussian form, asymmetric with an
exponential tail [4,5], extremely similar to that observed
for the order parameter fluctuations in a finite size equi-
librium system at criticality. Very similar distributions
can be observed for global quantities in other experi-
mental [6–9] and model correlated systems [10]. These
observations have generated recent interest in diverse
aspects of global fluctuations, for systems both in and
out of equilibrium [11–16]. We have previously argued
that the observation of similar fluctuations in the global
quantity for these radically different correlated systems
implies an analogy at the statistical level [3]. Specifi-
cally, we have shown [17], using the low temperature
phase of the 2D-XY model, that a key ingredient for the
occurrence of such non-Gaussian fluctuations is the action
of modes with a diverging distribution of spin wave
stiffness across spatial scales. In order to apply these find-
ings to the statistics of power injection in a confined
turbulent flow, we consider turbulence in the framework
of a stochastic cascade across scales. The flow state, at a
statistical level, is viewed as a gas of independent fluc-
tuations at all scales ‘ between the injection and dissipa-
tive lengths, � and L. The variance of the fluctuations of
these modes of energy transfer diverge at small scale,
which is the well accepted feature of turbulence, called
intermittency [1]. The divergence across the scales is
analogous to that observed in the model critical system.
0031-9007=03=90(10)=104501(4)$20.00 
the global power injection are a natural consequence of
intermittency.

Experimental data, reproduced from Ref. [5], are
shown in Fig. 1. The flow is driven by two concentric,
counterrotating disks, with cylindrical geometry, rotating
at constant frequency �. The probability distribution for
the fluctuations in the power, PI�t�, needed to drive the
flow is characterized by a negative skewness, with an
approximately exponential tail for fluctuations below
the mean and a much more rapid falloff for fluctuations
above the mean. The energy balance is given by [4]

dE�t�
dt

� PI�t� � PD�t�; (1)

where E�t� and PD�t� are, respectively, the instantaneous
kinetic energy and dissipation by viscous forces [2,4]
of the confined fluid. A time average of Eq. (1) yields
the condition of stationarity: PI � PD � M�0, where we
2003 The American Physical Society 104501-1
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define �0, the power consumption of the flow per unit
mass, and M, the total mass of the fluid.

In the absence of a microscopic description of the
statistical properties of the flow, a phenomenological
model is required to explain the observed fluctuations
about this mean value: first, we propose that the fluctua-
tions in PI�t� are related to fluctuations in the internal
kinetic energy of the flow

PI�t� � M�0 � E�t�: (2)

Here, E�t� � �E�t� � E�=� is the difference between the
instantaneous and mean kinetic energy, normalized by �,
an integral time scale characteristic of the energy injec-
tion and of the response of the driving mechanism (in-
ertia). That is, we propose that the torque required to shear
a fluid at constant rate � is a decreasing function of the
internal kinetic energy of the fluid. We predict, therefore,
that the constraint, � � const, forces the fluctuations in
PI�t� to be a mirror reflection of the fluctuations of the
internal energy of the flow. If constrained with constant
torque one would consequently expect reversed power
fluctuations with positive skewness, as also observed ex-
perimentally [18]. We do not suppose that mechanical
structures drive the disks, simply that the engagement
of the disks is reduced with increasing kinetic energy of
the underlying flow. An excess of kinetic energy should be
repartitioned over the entire flow and felt simultaneously
at the two disks, which would then decrease their engage-
ment in the fluid, independently of their rotation direc-
tion. This scenario provides a stabilizing loop through
which the turbulent steady state is maintained, and it is
consistent with experimental observation that the time
variation of the power injected into the upper and lower
disks displays positive correlations: power fluctuations of
all amplitudes are felt quasisimultaneously at both disks,
despite their rotation in opposite directions [see Fig. 1(a)
of Ref. [5] ].

Second, we build E�t� as the excess of transferred
energy at time t, summed over contributions from all
scales in the flow. For this we introduce �‘�~rr; t�, the
instantaneous real-space energy flux:

�‘�~rr; t� � �1
4
~rr‘ � �j�‘ ~uu�~rr�j2�‘ ~uu�~rr��; (3)

which we average over the flow volume to obtain the
energy flux at scale ‘,

�‘�t� �
1

V

Z
V

d3r�‘�~rr; t�; (4)

these variables could be computed in a direct numerical
simulation. Our phenomenology concerns the fluctuations
away from the steady state at all scales ‘: [�‘�t� � �0].We
adopt a statistical point of view rather than a dynamical
one, and we make the assumption that the ��‘ � �0� are
statistically independent stochastic variables [19] (one
should think of this as a nonlinear change of variables
rather than a physical tree structure replacing the real
flow). We then define the excess energy E as the sum over
104501-2
contributions from all scales:

E � M
X
‘

��‘ � �0�: (5)

This is a strong approximation, whose justification rests
with the results it produces, which are in striking agree-
ment with experiment —see Fig. 1. Physically, our model
implies that the energy injection at a given time takes into
account the entire structure of the energy flow at that
time. When �‘�t� > �0, energy is built up at scale ‘ and
the overall energy excess E�t� is the sum of such effects
over the entire range of scales.

Equation (5), together with our assumptions, allows
one to construct the PDF of E as the convolution of
probability densities for the elements ��‘ � �0�:

��E� �
Y
‘

p‘��‘ � �0�; (6)

where p‘��‘� is the PDF for the fluctuations of �‘. Once
the p‘��‘� are chosen, the above expression allows for the
numerical computation of the distribution for the global
quantity. In fact, one can express the PDF for the normal-
ized variable � � E�hEi

� as

���� �
Z 1

�1

dk
2�

eik���k�; (7)

where the characteristic function ��k� is the product of
the characteristic functions of each of the microscopic
distributions and the net variance �2 is the sum of the
microscopic variances. Then, using Eq. (2), the PDF for
the fluctuations of the normalized power input (! �
PI�PI

�PI
) is ��!� � �����.

The phenomenology proposed here cannot be devel-
oped within the context of Kolmogorov’s 1941 (K41)
theory of turbulence [1], as it ignores fluctuations around
mean values of energy injection and transfer. We therefore
develop Eq. (5) in the context of Kolmogorov’s refined
similarity hypothesis [2,20]. It allows for anomalous
scaling of the energy transfer at scale ‘:

h�q
‘i / �q

0�‘=L���q�: (8)

The spectrum ��q� is related to the experimentally ob-
served nonlinearity in the scaling exponents of the lon-
gitudinal velocity increments: h�‘u

qi / ‘#�q� / h�q=3
‘ i �

�‘=L�q=3 so that #�q� � q=3 ��q=3�.
In the following we use two different forms for the

microscopic distributions, compatible with the experi-
mentally determined exponents for the velocity structure
functions #�q�. We show that intermittency is necessary
to obtain asymmetric non-Gaussian distributions with
negative skewness. However, let us first return to some
details of the model: the �L=��3 correlated degrees of
freedom implicated in the flow [2] are transformed into
an ensemble of N scales. At each level the system is
described with a resolution length scale ‘n and the scales
are separated by a ratio �� �‘n�1=‘n�

3 such that �N �
�L=��3. The Reynolds number and the number of levels
are related through the definition Re� �L=��4=3 � �4N=9.
104501-2
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FIG. 2 (color online). PDF of global transferred energy for
Re varying between 104 and 107 (legend). The microscopic
distributions are �2 ones and � � 2:0.

P H Y S I C A L R E V I E W L E T T E R S week ending
14 MARCH 2003VOLUME 90, NUMBER 10
Note that the variable � is a free parameter in the theory.
In the original Kolmogorov-Obukhov theory (KO62) of
intermittency [2], the energy cascade, being a multiplica-
tive process with a large number of steps, is assumed to
have log-normal statistics. In this case pn�log�‘n

� is a
Gaussian distribution whose variance can be that of KO62
or that proposed by Castaing et al. [21]. As one assumes
scale invariance in KO62, the variance is �2

n �
�2
0��‘n=L���2� � 1�. This distribution leads to the quadratic

spectrum #�q� � q=3&q�3�q�=18. The value of the
intermittency parameter & ����2� that fits best the
experimental data is & � 0:21 [22]. Another possibility,
which gives a very good fit to the velocity intermittency
exponents is a �2 distribution:

pn��‘n
� � N‘n

�
'‘n�1
‘n

exp��a‘n
�‘n

�: (9)

In this case, we require that the variance of pn��‘n
� be

that of KO62, in addition to the conditions of normaliza-
tion and constant mean. The three conditions determine
N‘n

, a‘n
, '‘n

. From the expression for the moments
[h�q

‘n
i � �q

0��q'‘n
�='q

‘n
��'‘n

�] it is straightforward to
show that the spectrum ��q� is that of KO62 in the limit
‘n ! L. Even if �2 statistics does not strictly allow for
scale invariance for ��q� and #�q� in the inertial range,
the corrections are very small. The main advantage of the
�2 distribution is that it allows a straightforward calcu-
lation of the convolution product in Eq. (7):

log��k� � ik�0=��
XN
n�1

'‘n
log�1 ik=��a‘n

��: (10)

In Fig. 1 we show the experimental data published in
Ref. [5] together with the PDF for ��!�, calculated from
Eq. (5), using both log-normal and �2 models. They both
capture the essential features of the experimental data: (i)
the fluctuations in ! are strongly non-Gaussian, despite
the high value of the Reynolds number, i.e., of the large
number of contributions in the sum (5); (ii) the distribu-
tion is skewed towards negative values; (iii) the tails of
the PDF towards negative values are almost exponential,
although this seems better verified for the �2 microscopic
distribution than for the log-normal distribution. This
behavior is extremely robust against variations of the
Reynolds number, at fixed �. In this case, increasing the
Reynolds number leads to an increase of the number of
cascade steps N (as logRe) and, at the same time, to an
increase of the asymmetry in the shape of the micro-
scopic distribution at the smallest scales. In Fig. 2 we
show the evolution of the distribution with Re, for � �
2:0, for the �2 microscopic distributions. The curves vary
only slowly with Re. The asymmetry becomes more
pronounced as Re increases, as can be seen from the
skewness, ), which varies from �0:64 to �0:97 for Re
varying from 104 to 107. Hence, as in the experiment,
there is no evidence that ��!� will reduce to a Gaussian in
the limit of infinite Reynolds numbers, and therefore
104501-3
infinite N. Given the uncertainty in the experimental
results and the crudeness of our model, this qualitative
agreement seems extremely encouraging.

As � is a free parameter in the problem, it has been
chosen in Fig. 1 to give a good fit of the experimental
curves for each class of microscopic distribution. For a
fixed value of Re, varying � does not change the shape of
the global PDF. Using the �2 distribution, we observe a
slight increase of the skewness, from �0:65 to �0:83
when � is increased from 1.5 to 2 (for Re � 106), a typical
range of values used in cascade models [1].

However, there seems to be no a priori reason to fix �
and while we do not rule out a weak variation, we can fix
a universal form for the PDF, as proposed in [3] by letting
� vary with Re. Support for this proposition comes from
the evolution of the ratio �=PI with Re. Experimentally,
one observes a very slow decrease that may be fitted by a
power law dependence with exponent * � 0:3 [5]. In our
computations at fixed �, we find the ratio to be slightly
increasing, in disagreement with experiment. If instead of
fixing � we impose universality, we find a decreasing
ratio, with a weak power law dependence with exponent
* � 0:1.

Here, the small scales play a major role due to the
dispersion in the amplitudes and as in the finite size
critical system [23], one might expect the global PDF to
retain some characteristics of the microscopic measure,
with the experimentally observed asymmetry reflecting
the form of pn��‘n

�. This is indeed what we observe and
the symmetry of the global PDF is restored only if the
individual elements are made to have equivalent weight.
This is illustrated in Fig. 3, where we show a series of
PDFs produced at fixed Re and �, with ��2� varying
between the experimental value, 0.21 and zero. As ��2�
is reduced the PDF becomes more symmetric and, for
��2� � 0 it is well represented by a Gaussian. This point is
quite important: intermittency is absolutely necessary to
obtain an asymmetric and non-Gaussian PDF for the
104501-3
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FIG. 3 (color online). Variation of the global PDF with the
magnitude of the intermittency parameter j��2�j for Re � 106

and � � 2:0. The microscopic distributions are �2 statistics.
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global energy transfer. However this conclusion holds
only for the PDF of energy transfer. In the case of pres-
sure fluctuations Holzer et al. [24] have shown that inter-
mittency is irrelevant since for the pressure one integrates
�lu

2 which gives a dispersion of variance h�lu
2i �

��0l�
2=3 in the strict K41 description. We remark that,

with the phenomenology proposed here, negative skew-
ness is a direct consequence of kinetic energy fluctuations
with positive skewness, as are observed in microscopic
models with dissipation [12–14].

The importance of the small scale can be gauged by
recalculating E, excluding levels from either the top or the
bottom of the cascade. We find that with removal of
cascade levels near the dissipative scale the distribution
rapidly approaches a Gaussian form, while removal of
levels from the top of the cascade leaves the PDF essen-
tially unchanged. The entire global measure is therefore
seen to be influenced by a relatively small number of
statistically independent cascade levels describing the
system at small scales. If a universal PDF for the global
measure is indeed an experimental reality, then the dis-
persion in amplitudes must diverge with the Reynolds
number in such a way that the universal distribution is a
‘‘limit’’ function, valid even as Re ! 1. These argu-
ments lead us to a striking physical conclusion concerning
the nature of a turbulent flow: given the huge number of
small scale objects present in the flow [�L=��3 � Re9=4 �
109 for Re � 104]; if the PDF for the global measure is
non-Gaussian, it can mean only that these objects are
strongly correlated in space and time. This point seems
consistent with recent measurements of long time tem-
poral correlations in the dynamics of Lagrangian tracer
particles in a fully turbulent flow [25].

We finally address the point that the PDF of the in-
jected power has a Gaussian shape for open (nonconfined)
flows [4]. The distribution of the global quantity thus
depends on the overall size of the flow, although it is
known that small scale intermittency characteristics do
104501-4
not; for instance, the scaling exponents of the longi-
tudinal velocity increments are identical in open or con-
fined flows [22]. We propose that in nonconfined flows
several uncorrelated cascades occur simultaneously. In
this case, the probability for the overall energy transfer
is given as the convolution of N functional forms of the
type ��!� computed above. This tends rapidly to a
Gaussian. Experimentally, this could be tested by chang-
ing continuously the ratio of the disk to cylinder radius in
a ‘‘washing-machine’’ experimental setup.

The experimental data shown in Fig. 1, published in
Ref. [5], have been obtained with R. Labbé. We gratefully
acknowledge many fruitful discussions with M. Bourgoin,
S.T. Bramwell, B. Castaing, F. Chillà, M. Clusel,
T. Dombre, J. Farago, Y. Gagne, E. Lévèque, P. Marcq,
A. Naert, and J. Peinke. This work has been supported by
CNRS ACI Grant No. 2226.
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