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Full Waveform Inversion with Optimal Basis Functions
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Based on the approach suggested by Tarantola, and Gauthier et al., we show that the alternate use of
the step (linear) function basis and the block function (quasi-� function) basis can give accurate full
waveform inversion results for the layered acoustic systems, starting from a uniform background. Our
method is robust against additive white noise (up to 20% of the signal) and can resolve layers that are
comparable to or smaller than a wavelength in thickness. The physical reason for the success of our
approach is illustrated through a simple example.
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receivers, perhaps the simplest test case for nonlinear
inversion and a first-order approximation to the structure

receivers, sources, and time, respectively. One of the
most generally used methods in minimizing the misfit
Wave inversion means the recovery of the coefficients/
parameters of the wave equation from its solution(s). It is
one of the most important problems in physical sciences.
However, except for some cases of linear inversions (e.g.,
in 1D inversion) [1–4], most nonlinear inversions still
present considerable difficulties. In seismic inversions,
involving the imaging of Earth’s deep subsurface struc-
tures, the traveltime inversion is the most tractable [5]. A
more ambitious inversion approach is that of full wave-
form inversion, in which a common strategy is to retrieve
the model parameters by minimizing a misfit function.
While simple in concept, the success of full waveform
inversion has been rather limited because of the extensive
computational requirement and difficulty in realizing
target convergence. Some time ago, Tarantola [6] pro-
posed a scheme of full waveform inversion for acoustic
systems, which was subsequently implemented by
Gauthier et al. [7]. If only reflection data were used, the
method can map the high spatial frequency components
of the model, e.g., the interfaces, but totally fails in
recovering the low spatial frequency information, e.g.,
the layer velocities. This so-called low frequency lacuna
problem is rather well known in other seismic imaging
approaches as well. Later literature on full wave inversion
also met similar convergence problems [8–12]. The use of
global minimizing processes [13–16] has shown much
better convergence characteristics, but at the expense of
computational efficiency. Symes [17] proposed a smooth
and convex misfit function by using model parameters
which are linear in the inversion calculation. This method
has some successful applications [18,19]. Another pro-
posal is to improve the initial model by using the hybrid
inversion method, which minimizes a weighted combi-
nation of first-arrival traveltime and seismogram misfit
functions [20,21].

In this Letter, we consider the full waveform inversion
for a 2D layered acoustic system, with point sources and
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of Earth’s subsurface. By using the optimal basis func-
tions alternately in the inversion process, we not only
overcame the low frequency lacuna problem encountered
before, but also obtained robust and accurate results. The
physical reason for this success is elucidated by compar-
ing 1D analytic solutions at a single interface, for both the
step-function basis and the block function basis.

The pressure field Ps� ~xx; t� of our model satisfies the
equation
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where ~xx and t denote position and time, respectively, and
s� ~xx; t� is the source. The model is characterized by bulk
modulus 	� ~xx� and density �� ~xx�, with velocity v� ~xx� ����������������������
	� ~xx�=�� ~xx�

p
. In this work, we limit ourselves to uniform

density ( � � 1) and a layered model, thus there is only
one model parameter in the system, i.e., the bulk modulus
or the velocity, varying from layer to layer as a function
of depth y, i.e., v� ~xx� � v�y�. The nonlinearity of the
inversion problem remains under this restriction [22–
24], so this simplified problem still retains the most
interesting difficulties.

We use the misfit function
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where Ps� ~xxr; tjvm�y�� is the measured pressure at receiver
position ~xxr (with the source on the surface, denoted by
superscript s), vm�y� is the target velocity profile,
Ps� ~xxr; tjv�y�� is the calculated pressure at ~xxr for the
current model, characterized by v�y�, and �P denotes
the residual between the measured and calculated pres-
sures. In Eq. (2), the summation indices r; s; t stand for
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function is the damped least square approach, in which
the correction to the velocity, �v�y�, is evaluated accord-
ing to the equation �ATA� �I��~uu � AT�P, with �v�y� �P
i �uibi�y�. Here bi�y� denotes the ith basis function, A is

a m
 n matrix, AT is its transpose, � is a damping
coefficient, n is the number of model parameters, and
m � nr 
 ns 
 nt denotes the product of the numbers of
receivers, source, and time steps. The matrix elements of
A in the �r; s; t�th row and ith column are given by
A�fr; s; tg; i� � �Ps� ~xxr; t�=@ui, defined below. In this
Letter, we are concerned mainly with three sets of basis
functions: the step-function basis bi�y� � b�yi; y� �
H�y� yi�, where H � 1 if the argument is positive, and
H � 0 otherwise; the quasi-� function (block function)
basis, given by bi�y� � b�yi; y� � H�y� yi�H�yi � �y�
y�; and the linear basis bi�y�, defined to be bi�y� �
b�yi; y� � y� yi if y > yi, and 0 otherwise.

In all the prior full waveform inversions, the partial
derivatives were calculated with respect to the usual
block function basis [1,25–29]. For an arbitrary basis
function, we first write Ps� ~xx; tjv�y� � �v�y�� �
Ps� ~xx; tjv�y�� � �Ps� ~xx; t�. Under the Born approximation,
�Ps� ~xx; t� satisfies the equation

I�Ps� ~xx; t� �
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This equation can be solved by using the Green’s func-
tion, i.e., by defining G� ~xx; t� t0; ~xx0� as the solution of
IG� ~xx; t� t0; ~xx0� � �� ~xx � ~xx0���t� t0� so that
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 �Ps� ~xx0; t0�d~xx0dt0; (4)

where ~xx0 � �x0; y0�. For realG� ~xx; t� t0; ~xx0�, it is a property
of the Green’s function that G� ~xx; t� t0; ~xx0� � G� ~xx0; t�
t0; ~xx�. Thus, we have
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If we restrict �v� ~xxs� � 0, i.e., no velocity correction at
the source position, then
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Here the overdot denotes time derivative. Consider chang-
ing v�y� to v�y� � �uibi�y�. The partial derivative with
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respect to the basis function bi�y� is then given by
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It is seen that only Ps� ~xx;t� for all sources, and
G� ~xx; t� t0; ~xxr� for all receivers are needed to obtain all
the matrix elements. Thus, the calculation of the matrix
elements can be very efficient.

Steepest descent is a special case of the damped
least square method when �� kATAk. In that limit,
we have �u�yi� /

P
r;s;t�@P

s� ~xxr; t�=@u�yi���Pr;s;t, where
�u�yi� � �ui. We now use an exactly solvable 1D model
[5,30,31] to elucidate the rationale for optimal basis se-
lection in the context of the steepest descent method.
Consider an interface at y � a > 0, where v�y� � v0 for
y < a, and v�y� � v1 for y � a. A single pulse, in the
form of fcos�2!�y� vot�=d� � 1g4 in the region of
�1=2< �y� vot�=d < 1=2 and 0 otherwise, is incident
on the interface at y � a. From the reflected signal re-
trieved at the receiver located at y � 0, the aim is to
recover the model profile, starting from a uniform initial
model with v0. If the pressure signal of the incident wave
at the receiver is denoted by ps�t�, then the difference
between the measured and calculated pressures is simply
the reflected signal, �P�t� � �ps�t� 2a=v0�, where � �
�v1 � v0�=�v1 � v0�. The partial derivative in the block
function (quasi-� function) basis is
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The resulting �u�y0�, for the case v1 >v0, is plotted in
Fig. 1(a) by the dashed line. It is seen that the correction is
oscillatory in the neighborhood of y� a, with a net
integrated area of zero. The corresponding velocity cor-
rection, given by �v�y� �

R
�u�y0�b�y0; y�dy0, shown by

the dashed line in Fig. 1(b), bears no resemblance to a step
function. Thus, it would be difficult, if not impossible, to
recover the true velocity profile by using the block func-
tion basis. This is the underlying cause of the low fre-
quency lacuna problem encountered before.

The reason for the oscillatory correction is easily
traced to the interference of waves scattered by y0 and
y0 � �y. To suppress the interference, we switch to the
step-function basis in the calculation of the derivatives
as stipulated by Eq. (7). Then the partial derivative is
given by
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The resulting �u�y0� is also shown in Fig. 1(a) (solid line).
It leads to the corresponding velocity correction shown by
the solid line in Fig. 1(b), seen to be close to a step
function at y � a. The step-function basis is thus more
efficient in recovering the target.
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FIG. 2. Results at different stages of the inversion process for
a 2D layered model. The target model is shown by the dotted
line in both (a) and (b). In (a), the result after the first ten
iterations of the damped least square with the step basis
function is shown by the dash-dotted line. The result after
ten further iterations by using the block function basis is shown
by the dashed line. The solid line shows the result after a whole
inversion unit. In (b), the results after two, four, and ten
inversion units are shown by the dash-dotted, dashed, and
the solid lines, respectively. The definition of an inversion
unit is described in the text. Convergence to the target model
is seen to initiate at the surface and proceed downward.

FIG. 1. The velocity correction calculated with respect to the
block function (quasi-� function) basis (dashed line) and the
step basis function (solid line) basis for the 1D system. The
amplitudes �u�yi� are shown in (a); the corresponding velocity
corrections �v�y� are shown in (b).
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In real systems, a point source generally generates an
oscillatory waveform, and a more complex form of �u�y�
than that shown in Fig. 1 would result. In these cases, we
identify the relevant �u�y� (calculated from the step-
function basis) to be only those part(s) which are greater
in magnitude than 80% the maximum of j�u�y�j. The rest
of �u�y� was set to zero. In other words, we used only the
largest part(s) of the correction.

While the block function basis has its deficiency, yet it
can recover the positions of the interfaces efficiently.
Thus, an inversion process involving the alternate use of
both basis functions (plus the linear basis as well if the
model has piecewise linear regions) would be optimal in
recovering the interface positions as well as the layer
velocities.

Figure 2 shows a layered 2D acoustic model with a
velocity versus depth (defined as y > 0) profile given
by the dotted line. Point sources and receivers were
used. Forward calculations used a sixth-order finite dif-
ference on a 80
 80 grid to generate the data. The pres-
sure release boundary condition was used on the upper
surface y � 0. For the other boundaries, wave reflection
was minimized by adding an additional damping layer.
The Ricker wavelet was used as the source pulse: s�t� /
�1� 2!2�t� ts�

2=t2p� exp��2!2�t� ts�
2=t2p�, with tp �

12:0 and ts � 20:0 in our time unit. Ten source positions
and ten receiver positions were interlaced and evenly
distributed on the surface.
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The initial model is a constant profile with velocity
equal to that at the surface. It was first updated by the
damped least square method using the step-function
basis, iterated ten times. The result is shown in Fig. 2(a)
(dash-dotted line). The convergence was found to be
much faster than that by using the block function basis.
To obtain the positions of the deeper interfaces, we fur-
ther updated the current model by using ten iterations
using the block function basis. The new result is shown
in Fig. 2(a) by the dashed line. It is seen that there are
small ‘‘incorrect’’ variations. We introduced a threshold,
small compared to interfacial velocity jumps, to further
update the model. That is, the current model was scanned
from the surface to the bottom, and only those velocity
jumps larger than the threshold were retained. This re-
configuration process led to the result shown by the solid
line in Fig. 2(a). The previous three processes constitute
an ‘‘inversion unit.’’ The results after two, four, and ten
iterations of the inversion unit are shown by dash-dotted,
dashed, and solid lines in Fig. 2(b), respectively. The final
result is almost indistinguishable from the target model,
104301-3



FIG. 3. Results at different stages of the inversion process for
another 2D layered target model (a), where there is a bump in
the middle, and a mixed 2D piecewise linear and piecewise
constant target model (b). The initial model for both is the
constant profile.
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and our inversion has resolved layers with thicknesses
comparable to or smaller than the wavelength, shown in
Fig. 2(a). We have confirmed the robustness of our method
for several target models. In Fig. 3(a), we show the results
for a model with a high bump in the middle. The final
inversion result is also excellent.

The above inversion approach is slightly modified for a
model shown in Fig. 3(b), consisting of a piecewise linear
region mixed with piecewise constant regions. Now in
our inversion unit ten iterations of the linear basis func-
tion precede the rest of the steps in the inversion unit
defined above. Otherwise the process remains the same. It
is seen that, even in this case, the model can still be
accurately recovered starting from a uniform background.
Our inversion is also robust with respect to additive white
noise. Appreciable deviations from the target model ap-
pear only with white noise amplitude greater than �20%
of the signal.
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