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We investigate aging behavior in a simple dynamical system: a nonlinear map which generates
subdiffusion deterministically. Asymptotic behaviors of the diffusion process are described using aging
continuous time random walks. We show how these processes are described by an aging diffusion
equation which is of fractional order. Our work demonstrates that aging behavior can be found in

deterministic low dimensional dynamical systems.
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Aging behavior is found in complex dynamical systems
like spin glasses, glasses, polymers [1], and in random
walks in random environments [2]. These systems usually
include many interacting subunits and are disordered, and
their dynamics is driven by noise. In this Letter I will
demonstrate that aging can be found also in low dimen-
sional deterministic systems. Specifically, I will show
that diffusion generated by one-dimensional maps exhib-
its aging and that statistical properties of the correspond-
ing trajectories can be analyzed using aging continuous
time random walks (ACTRW), introduced by Monthus
and Bouchaud [3] as a simple phenomenological model of
aging dynamics in glasses (see also [4] and references
therein).

There exist several methods to investigate aging. One
method is to start a dynamical process at time ¢t = —f¢,,
then at time r = 0 add a small perturbation to the system.
One eventually measures the response at some time ¢ > 0.
Alternatively, one can measure correlation functions be-
tween physical quantities at time ¢ = 0 and time ¢, after
aging the system in the interval (—1¢,, 0). I use the latter
approach. A system exhibits aging if its dynamical prop-
erties depend on ¢ and ¢, even in the limit when both are
long. Of course, many systems do not exhibit aging,
namely, when ¢ > 7, where 7 is a characteristic time scale
of the problem, dynamical properties of the system are
independent of the aging time ¢,.

In many cases trajectories generated by deterministic
systems, such as low dimensional Hamiltonians or maps,
are highly irregular. For an observer, these trajectories
seem to be generated by a stochastic rather than a deter-
ministic mechanism. Hence analysis of chaotic trajecto-
ries generated deterministically is often based on random
walk concepts [5—7]. It is well known [8] that both con-
servative and dissipative deterministic systems may gen-
erate normal (e = 1) or anomalous (a # 1) diffusion for
a coordinate x,

(a2 ~ 1%, D

where the average is over a set of initial conditions. The
anomalous behavior is due to long trapping events in
the vicinity of unstable fixed points [9,10] or stickiness
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near islands in phase space [11]. Zaslavsky [11] showed
how these processes are described by fractional kinetic
equations.

It is natural to ask if such low dimensional determin-
istic systems exhibit aging behaviors? And if so, how
should we model aging in such systems? Here I start to
answer these questions. I investigate dynamics generated
by iterated maps which exhibit rich aging behavior and
demonstrate how aging can be used to probe dynamics in
deterministic systems. Previously, Radons [12] pointed
out that space disordered dynamical maps may exhibit
aging behavior, in analogy with random walks in random
environments. As far as I know, there is no previous work
relating aging to dynamics in low dimensional nonlinear
and nonrandom systems.

Probably the simplest theoretical tool which generates
normal and anomalous diffusion are one-dimensional
maps

Xip1 =X + F(xt) (2)

with the following symmetry properties of F(x): (i) F(x)
is periodic with a periodicity interval set to 1, F(x) =
F(x + N), where N is an integer. (ii) F(x) has inversion
antisymmetry, namely, F(x) = —F(—x). The study of
these maps was motivated by the assumption that they
capture essential features of a driven damped motion in a
periodic potential [13]. Geisel and Thomae [9] considered
a rather wide family of such maps which behave as

F(x) = ax* forx — +0, 3)

where z > 1. Variations of these maps have been inves-
tigated by taking into account time dependent noise [14],
quenched disorder [15], and additional uniform bias
which breaks the symmetry of the map [16]. I use the map

F(x) = (2x)%, 0=x= %, (4)

which together with the symmetry properties of the map
define the mapping for all x. In Fig. 1 I show the map for
three unit cells.

To investigate aging, e.g., numerically, I choose an ini-
tial condition x_, which is chosen randomly and uni-
formly in the interval —1/2 <x_, <1/2. The quantity
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FIG. 1. The map x,.; = x, + F(x,), defined by Eq. (4) with
z = 3. The linear dash-dotted curve is x,; = x,. The unstable
fixed points are on x, =0, 1, 2.

of interest is the displacement in the interval (0, ¢), x =
X; — Xg, which is obtained using the map Eq. (2). Previous
work [9,17] considered the nonaging regime, namely,
t, = 0.

In an ongoing process a walker following the iteration
rules may get stuck close to the vicinity of unstable fixed
points of the map (see Fig. 1). It has been shown, both
analytically and numerically, that probability density
function (PDF) of escape times of trajectories from the
vicinity of the fixed points decays like a power law [9]. To
see this, one considers the dynamics in half a unit cell,
say, 0 < x < 1/2. Assume that at time ¢ = 0 the particle is
on x* residing in the vicinity of the fixed point x = 0.
Close to the fixed point we may approximate the map
Eq. (2) with the differential equation dx/dr = F(x).
Hence the escape time from x* to a boundary on b (x* <
b<1/2)ist= [°.[F(x)]"'dx using Eq. (3)

1 x*—z+1 b—z+1
e~ — . 5
a[z—l z—l} ©)

The PDF of escape times #(¢) is related to the unknown
PDF of injection points n(x*), through the chain rule
() = n(x*)|dx*/dt|. Expanding n(x*) around the un-
stable fixed point x* = 0 one finds that for large escape
times [9]

__
Ty

where A depends on the PDF of injection points. When
z > 2 corresponding to « <1 two characteristic behav-
iors are observed. The first is that the average escape time
diverges. The second, based on the work of Ignaccolo
et al. [18], is that the invariant time independent density
is never reached [19] (e.g., starting from a uniform dis-
tribution) and that the process is nonstationary. The aging
I find below is related to these behaviors.

To consider stochastic properties of the aging dynam-
ics I now investigate ACTRW [3], deriving an explicit
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(t) ~ (6)

expression for the asymptotic behavior of the Green
function. Specifically consider a one-dimensional nearest
neighbor lattice random walk, where lattice points corre-
spond to the cells of the iterated maps. Waiting times on
each lattice point are assumed to be described by ().
Note that after each jumping event it is assumed that the
process is renewed, namely, we neglect correlation be-
tween motions in neighboring cells. This assumption will
be justified later using numerical simulations. As men-
tioned, the start of the ACTRW processis att = —1¢,, and
our goal is to find the ACTRW Green function P(x, 7, t).

In ACTRW we must introduce the distribution of the
first waiting time ¢;: the time elapsing between the start
of observation at + = 0 and the first jump event in the
interval (0, #). Let i, (t,) be the PDF of ¢,. Let h(u) be the
double Laplace transform of %, (1)

() = f " an, j " dighy (e (7)
0 0

Recently, when Gordeche and Luck [20] investigated the
theory of renewal processes they showed that

_ b gls) — )
hi(w) = I—¢(s) wu—s ®)
when z > 2 corresponding to a < 1 in Eq. (6)
h (1)) ~ sin(7ra) e ©)

1t +1,)

which is valid in the long aging time limit. Note that
Eq. (9) is independent of the exact form of i(z), besides
the exponent . When a — 1 the mass of the PDF £, ()
is concentrated in the vicinity of ¢; — 0, as expected from
a “normal process.” In what follows I will also use the
double Laplace transform of Eq. (9)

a a

u® — s
s%(u —s)

I have checked numerically the predictions of Eq. (9)
for z = 3, analyzing trajectories generated by the map
Eq. (4) with three different aging times. In Fig. 2 I show
the probability of making at least one step in the interval
0,0): [oh, (Ddt =1 — po(t, 1), where py(t,, 1) is the
probability of making no steps. The results show a good
agreement between numerical results and the theoretical
prediction Eq. (9) without fitting. Figure 2 clearly dem-
onstrates that as the aging time becomes larger the time
for the first jumping event, from one cell to its neighbor,
becomes larger in the statistical sense. Thus the aging
behavior is clearly related to the slow escape times from
the vicinity of fixed points (when z > 2).

We now investigate the ACTRW Green function. Let
pn(t,, 1) be the probability of making n steps in the time
interval (0, 7). Let P(k, s, u) be the double Laplace-Fourier
transform (x — k, r, — s, t — u) of P(x, t,, ), then

hy(u) ~ (10)

P(k, s, u) = i (s, u)cos™(k), (11
n=0
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FIG. 2. The probability of making at least one step in a time

interval (0, 1) for different aging times specified in the figure.

The solid curve is the theoretical prediction Eq. (9); the dotted,

dashed, and dot-dashed curves are obtained from a numerical

solution of the map with z = 3.

where p,,(s, u) is the double Laplace transform of p,(z,, 1).
In Eq. (11) cos"(k) is the characteristic function of a
random walk with exactly n steps. Using the convolution
theorem of Laplace transform

1—sh(u)

n=20
A(s, 1) = su B ’ 12
R AP T

Hence inserting Eq. (12) in Eq. (11), using Eq. (8), and
summing we find

1 () — ()1 — cos(k)]
s = ot = 91— o) T = ) costh)]’
(13)

Equation (13) is a generalization of the well known
Montroll-Weiss equation describing the nonequilibrium
CTRW process [11,21]. Note that only if the underlying
process is a Poisson process, the Green function P(x, 7, )
is independent of ¢#,.

Before considering the behavior of the Green function
P(x, t,, t) let me consider the second moment. By differ-
entiating Eq. (13) with respect to k twice, setting k = 0,
and using the Tauberian theorem, I obtain the mean
square displacement of the random walk for 7, 7, > Al/®

(F(tg 1)) ~ [ +1)*—15] (4

1
AI'(1 + «)
For times t > ¢, I recover the standard CTRW behavior,
(x%(t,, 1)) = t* [21]. For t < t, I find (x*(t,1,)) = t/tl~%;
hence as ¢, becomes larger, the diffusion in this regime is
slowed down.

This ACTRW behavior is shown in Fig. 3 for the
iterated map. Good agreement between ACTRW and the
numerical simulations is found. All the curves in Fig. 3
converge into (x*(t,, 1)) « t* for long forward times ?,
while at shorter times the diffusion is clearly slowed
down as the aging time is increased.
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FIG. 3. The mean square displacement versus the forward
time ¢ for different aging times ?,; t, = 0, triangle; ¢, =
1000, diamond; ¢, = 10000, circle; and ¢, = 60000, star. The
solid curves are the theoretical prediction Eq. (14). Here z = 3.

To investigate properties of the Green function
P(x, t, t) in the limit of long ¢ and ¢, I consider the
continuum approximation of Eq. (13). Inserting the large
wavelength expansion cos(k) ~ 1 — k?>/2 and low fre-
quency expansion ¢ (u) ~ 1 — Au® in Eq. (13)

(ua _ Sa) Aua*]
s%u —s) Au® + k*/2°

sYu — su®
a+1

Pk, s, u) ~ - (15)

u(u — )

Inverting to the double time (z, ¢t,)—real space x domain
one finds that the Green function is a sum of two terms:

sin(7a) 1
WO+ D)

el—+2/0) (4|~ @/
o M o : (16)
a(2A)V/« (24)V/«

P(X, ta’ t) -~ pO([a’ t)é(x) +

where in this limit

sin(mra) (o dx
T /e, X4(1 + x)’

polte, ) ~ (17)
The first term on the right hand side of Eq. (16) is a
singular term. It corresponds to a random walk which
did not make a jump in the time interval (0,7). The
symbol ® in the second term in Eq. (16) is the Laplace
convolution operator with respect to the forward time ¢,
while 1,/,(¢) is the one sided Lévy stable PDE, whose
Laplace pair is exp(—u®/2). In the limit & — 1 we get a
Gaussian Green function which is independent of %,
[proof: set « = 1 in Eq. (15)].

The behavior of the Green function Eq. (16) is shown in
Fig. 4. A good agreement between simulations and the
ACTRW Green function is obtained. Not shown is the
singular behavior on the origin [ie., the 8(x) term in
Eq. (16)]. The behavior of this singular term is displayed
in Fig. 2.

We now consider an aging diffusion equation which
describes the dynamics of the iterated maps and more
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FIG. 4. The Green function obtained from simulation of the
deterministic map in scaling form for (i) t, = 10* t = 103,
circles; (ii) t, = 10% ¢t = 10*, triangles; and (iii) t, =0,
t =4+ 10, diamonds. The curves are our theoretical results
which are in good agreement with the simulations with z = 3.

generally any ACTRW process. The equation is of frac-
tional order, and it can be used to solve aging diffusion
problems with different types of boundary and initial
conditions. The equation is obtained from the asymptotic
long time ¢ and long aging time ¢, solution of the ACTRW
Eq. (16). The aging diffusion equation describes the non-
singular part of the Green function, and it reads [22]

84P(x, 1, 1)
Ai
ot

—a

1 A
= VPP 1, 1)+ Iy () @ (),

(1-a)
(18)

where 6%/81“ is the Riemann-Liouville fractional deriva-
tive [11,21], and h, (¢) is given in Eq. (9). The singular
part of the Green function is specified in Eq. (16), and
since the singular part of the Green function describes
random walks where the number of steps is zero, bound-
ary conditions do not alter its behavior. Equation (18)
shows how to include aging dynamics into the fractional
kinetic framework [11,21,23]. The second term on the
right hand side of the aging diffusion Eq. (18) is a source
term; we see that the age of the processes enters only
through this term reflecting the fact that only statistics of
the first jump event are sensitive to the age of the process.
Note that Stariolo [24] used a nonlinear diffusion equa-
tion approach to model aging dynamics.

I have focused on the case a <1, but what hap-
pens when a > 1? If @ > 1 (or z <?2), corresponding
to a situation where the mean waiting time (f) =
[& ty(p)dt is finite, one finds a well known behavior
lim, e by (1) = o (0dt/{t) [to see this insert the
small s expansion (s) =1 — s(r) + ... in Eq. (8)]. We
see that in this case £, (;) does not depend on 7,; hence
for this asymptotic limit the map Eq. (2) and (3) will not
exhibit aging behaviors. This does not imply that inter-
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esting aging behaviors cannot be observed also for z < 2
when ¢, is finite; however, aging in this case will be
observed only within a certain time window (see [25]
for related work).

I thank J. P. Bouchaud for pointing out Ref. [20] and
Y.C. Cheng for helping with the numerics. Part of this
work was completed at MIT.
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