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A metastable resonance state of the periodically driven Gaussian potential well is shown to be
scarred on a single unstable periodic orbit of the classical motion. The photodetachment rate of this
quantum state is strongly correlated with the Lyapunov exponent of the unstable periodic orbit over a
wide range of driving field strengths.
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times for the quantum states. This made it difficult to
compare the properties of the quantum state and those of

positive, with larger values of � indicating a more un-
stable orbit. We have calculated Lyapunov exponents, as a
One-dimensional potential wells driven by a periodic
field provide a convenient way to study quantum-classical
correspondence. Classically, these are the simplest sys-
tems that can exhibit Hamiltonian chaos. The fact that
these models involve only one spatial dimension makes it
very easy to visualize their classical dynamics by creating
a strobe plot (a plot of the location of classical trajectories
in the phase space after each cycle of the field). Other
details of the classical dynamics (Lyapunov exponents,
etc.) can be more easily calculated for these models than
for higher-dimensional models. The quantum versions of
these models also provide a distinct advantage over
higher-dimensional models because they are much easier
to simulate on a computer. In addition, it is possible to
visualize the phase space structure of a quantum state in
these systems by constructing the Husimi distribution of
the state [1].

One-dimensional time-periodic systems may also pro-
vide a convenient way to study atomic stabilization [2].
Atomic stabilization is characterized by a decrease in the
probability for an electron to ionize as the strength of the
driving field is increased. Interest in this phenomenon
was heightened when stabilization was observed in recent
experiments involving periodically kicked Rydberg
atoms [3]. Quantum-classical correspondence plays a
role in atomic stabilization, as shown by the fact that
some stabilized quantum states of the periodically kicked
Rydberg atom may be associated with stable regions in
the classical phase space of that system [4].

Quantum-classical correspondence may also be related
to stabilization in other ways. Some stabilized quantum
states may be localized (or scarred) on unstable periodic
orbits of the classical motion. Scarred eigenstates of a
quantum system, in which the eigenstate has a heightened
probability density in the vicinity of an unstable periodic
orbit, were originally identified by Heller [5]. Jensen and
co-workers provided the first evidence to link scarred
eigenstates to stabilization [6]. However, the calculation
technique used in their work did not provide decay life-
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the classical periodic orbit on which it was scarred. In the
present work we seek to provide a quantitative compari-
son between the photodetachment rate (the reciprocal of
the lifetime) of a stabilized quantum state that is scarred
on an unstable periodic orbit and the Lyapunov exponent
of that periodic orbit.

The model we will investigate is an inverted Gaussian
potential interacting with a monochromatic driving field
in the radiation gauge. The Hamiltonian of this system in
atomic units ( �h � 1, etc.) is

H �
1

2

�
p�

�
!
sin�!t�

�
2
�V0 exp���x=a�2�; (1)

where V0 � 0:63 a:u:, a � 2:65 a:u:, � is the strength of
the driving field, and ! is the field frequency. This system
exhibits characteristics of atomic stabilization, because
the number of metastable quantum resonance states in-
creases as the field strength is increased [7]. Moreover,
these resonance states are scarred on unstable periodic
orbits of the classical motion [8].

Figure 1 shows strobe plots of the motion at two differ-
ent field strengths. We have identified four different peri-
odic orbits for this system for field strengths ranging from
� � 0:062 a:u: to � � 0:18 a:u: One periodic orbit is
stable and the other three are unstable. As the field
strength is increased the locations of the periodic orbits
at t � 0 move away from each other along the line p � 0
in phase space. The stable orbit (orbit A) remains near the
origin and is surrounded by an island of regular motion,
which becomes smaller as the field strength is increased.
One of the unstable orbits remains just outside of this
regular region (orbit B), while the other two are located
near x � � (orbit C) and x � 2� (orbit D), where � �
�=!2 is the classical excursion parameter for a free
electron in the field. Orbits B and D are mirror images
of each other.

We are primarily interested in the stability of these
periodic orbits as measured by their Lyapunov exponents
[9]. The Lyapunov exponent (�) of an unstable orbit is
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FIG. 2. The continuous line shows the Lyapunov exponent (�)
of orbit C as a function of field strength (�). The data points
show the photodetachment rate (�) of the resonance state
scarred on orbit C at several field strengths.

FIG. 1. Strobe plots of the classical motion in the periodi-
cally driven inverted Gaussian system. The locations of peri-
odic orbits at t � 0 are indicated by filled circles. The orbits are
denoted A to D from left to right. Orbit A is stable and is
surrounded by an island of regular motion that decreases in
size as � is increased. The other orbits are unstable and move
away from each other as � is increased.
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function of �, for all four periodic orbits for 0:062 � � �
0:18 a:u: The orbit that lies in the center of the island of
regular motion (orbit A) is found to have � � 0, as ex-
pected for a stable orbit. The antisymmetric pair of orbits
(orbits B and D) have the same Lyapunov exponent,
which increases slightly as � is increased, indicating
that these unstable orbits become more unstable as the
driving field becomes stronger. The Lyapunov exponent of
orbit C decreases significantly as � is increased from
0:062 to 0:18 a:u:, indicating that this unstable orbit is
becoming less unstable as the field strength is increased.
The continuous curve in Fig. 2 illustrates the behavior of
this Lyapunov exponent as a function of �. As we will see,
the somewhat counterintuitive behavior of this periodic
orbit may be responsible for stabilizing the quantum
system against ionization.

To investigate the dynamics of a time-periodic quan-
tum system one usually examines the Floquet states,
which play a role in time-periodic systems similar to
that played by energy eigenstates in time-independent
systems. The Floquet states are eigenstates of the one-
period time evolution operator ÛU�0; T� [10]. Because an
open system can ionize, the eigenvalues of ÛU�0; T� will be
of the form e�iq�T , where q� � �� � i��=2. The quan-
tity q� is called the quasienergy of the Floquet state. The
quantity �� is the photodetachment rate, and the lifetime
of the Floquet state is given by �� � 1=�� in atomic
units. Some of the Floquet states will be metastable and
localized in phase space. These states are known as
resonances.
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To analyze the resonances of our model, we employ two
versions of the complex-scaling method [11]. We identify
resonance states and determine their photodetachment
rates using the standard complex-scaling method, in
which the x coordinate is scaled by a complex factor
ei�. Although the standard complex-scaling technique
can provide for very accurate calculation of the photo-
detachment rates (our results are converged to eight or
more decimal places), it provides eigenstates that are
functions of the complex scaled coordinate. The trans-
formation back to the real coordinate cannot usually be
carried out when the wave functions are represented in
a finite basis [12]. To obtain wave functions in terms of
the real coordinate we use the exterior complex-scaling
technique, in which the complex scaling occurs only for
jxj > xs. This technique provides eigenstates that are not
scaled within the interior box jxj< xs. The details of our
implementation of these methods can be found in Ref. [8].
For � � 0:09 a:u: we use xs � 25 a:u: and for � >
0:09 a:u: we use xs � 50 a:u:

Once we have identified a resonance state (using stan-
dard complex scaling) and calculated its wave func-
tion (using exterior complex scaling), we can examine
the distribution of that state’s probability in phase
space by constructing the Husimi distribution of the state
[1]. The Husimi distribution is a smoothed probability
distribution for a quantum state in phase space. The
smoothing of the distribution is necessary because of
the restrictions of the uncertainty principle. In prac-
tice, one constructs the Husimi distribution by calculat-
ing the overlap of the quantum state with a grid of
Gaussian wave packets spaced evenly throughout some
region of phase space (see Ref. [8] for details on our
method for constructing the Husimi distribution of reso-
nance states). The Husimi distribution allows us to iden-
tify which resonance states are scarred on unstable
periodic orbits of the classical motion. Scarred resonance
states have Husimi distributions that are peaked on or
103001-2



P H Y S I C A L R E V I E W L E T T E R S week ending
14 MARCH 2003VOLUME 90, NUMBER 10
near the location of an unstable periodic orbit in the
phase space.

At very low field strengths our model has only three
resonance states, but this increases to five as the field
strength is increased [7]. A previous investigation of
this model revealed that many of these states have
Husimi distributions that are peaked on unstable periodic
orbits [8]. However, for field strengths � � 0:18 a:u: there
is a stable orbit surrounded by an island of regular motion
in the phase space. Many of the resonance states have
significant probability in this region. This makes their
classification as ‘‘scars’’ uncertain. We find only one state
that is peaked only on an unstable periodic orbit, with
virtually no probability in the stable region of phase
space. This state is a true scar, and it is peaked on orbit
C. Figure 3 shows Husimi distributions for this state, as
well as the locations of the four periodic orbits, at several
field strengths. It is clear that the Husimi distribution
becomes more strongly peaked on the unstable periodic
orbit as the field strength is increased. At � � 0:16 a:u: it
appears that the state is beginning to spread into the
regular region surrounding orbit A.

One might expect some properties of this scarred state
to be connected to the Lyapunov exponent that measures
the stability of orbit C. The strength of the scarring in a
scarred state is inversely related to the Lyapunov expo-
nent of the periodic orbit on which it sits [5]. The Husimi
distributions in Fig. 3 clearly show the strengthening of
the scar as � increases (and the Lyapunov exponent of
orbit C decreases). In addition, a quantum wave packet
that is initially centered on an unstable periodic orbit will
spread away from that orbit at a much faster rate than one
centered on a stable orbit [13]. In fact, for a wave packet
initially centered on an unstable periodic orbit, the cor-
relation of the wave packet with its initial state decays at a
rate given by the Lyapunov exponent of the periodic orbit
[5]. In a bounded system, such a wave packet would reflect
off of the phase space boundaries and eventually form a
standing wave. This standing wave would have a photo-
FIG. 3. Husimi distributions of the scarred resonance state
for several field strengths. The locations of the periodic orbits
are shown as filled circles. The orbits are denoted A to D from
left to right.
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detachment rate of zero and there would be no correlation
between the properties of this wave function and the
Lyapunov exponent of the periodic orbit. In an open
system, however, the outgoing portions of the wave func-
tion are not reflected by a boundary and never form
standing waves. In our calculations the outgoing portions
of the wave function are absorbed by the effective poten-
tial induced by the complex-scaling procedure. Under
these circumstances the photodetachment rate of a
scarred state might be closely related to the Lyapunov
exponent of the periodic orbit. Indeed, some broad reso-
nance states are known to be associated with unstable
periodic orbits and their widths (�) are thought to be
related to the Lyapunov exponent of the periodic orbit
[14]. The association between scarring and stabilization
mentioned previously makes the likelihood of a correla-
tion between the photodetachment rate and the Lyapunov
exponent even greater.

Figure 2 shows the photodetachment rate (�) of the
state that is scarred on orbit C, as well as a plot of the
Lyapunov exponent (�) of orbit C, for several field
strengths. The photodetachment rate decreases as the field
strength is increased, which means that the lifetime of
the state increases as � increases. So this scarred reso-
nance state exhibits the characteristics of atomic stabili-
zation. In fact, for � 	 0:13 a:u: this state has the longest
lifetime of any resonance state in the system. Further-
more, the behavior of the photodetachment rate as a func-
tion of � is very similar to the behavior of the Lypunov
exponent of orbit C.

We have analyzed the correlation between the photo-
detachment rate of this scarred resonance state and the
Lyapunov exponent of orbit C. The correlation plot is
shown in Fig. 4(a). Note that the data for low field
strengths appear in the top right of the plot, while the
data for high field strengths is in the bottom left. It is clear
that there is a strong positive correlation. Figure 4(a) also
shows the line � � � and the line of best fit whose
equation is given by � � 1:505�� 0:010 a:u: The corre-
lation coefficient for this fit is R � 0:953, indicating a
probability of only 4
 10�8 that these two quantities are
uncorrelated. If we restrict the range of field strengths to
those between � � 0:08 a:u: and � � 0:13 a:u: we find that
the relationship between � and � is very linear, as shown
in Fig. 4(b). The line of best fit for this restricted range of
field strengths is � � 1:496�� 0:013 a:u: and the corre-
lation coefficient is R � 0:993.

At this point we can only speculate as to why the
relationship between � and � is so linear for field
strengths between � � 0:08 a:u: and � � 0:13 a:u:, but
appears to be different for field strengths outside this
range. This particular resonance state does not exist at
very low field strengths [8]. It may be that for low field
strengths the resonance has not fully formed and its
association with the unstable periodic orbit is relatively
weak. This might explain why the photodetachment rate
103001-3



FIG. 4. Correlation between the photodetachment rate (�) of
the scarred resonance state and the Lyapunov exponent (�)
of the unstable orbit on which it is scarred. The correlation over
the full range of field strengths (� � 0:065 to 0:18 a:u:) is
shown in (a). Also shown in (a) is the line � � � and the
line of best fit, given by � � 1:505�� 0:010 a:u: with corre-
lation coefficient R � 0:953. The correlation over a restricted
range of field strengths (� � 0:08 to 0:13 a:u:) is shown in (b),
along with the line of best fit for this set of data (� � 1:496��
0:013 a:u: with correlation coefficient R � 0:993). Note that the
points in the upper right of the plot correspond to low field
strengths, while the points in the lower left correspond to high
field strengths.
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is higher at low field strengths than it would be if the
linear relationship continued below � � 0:08 a:u: At high
field strengths we see that the photodetachment rate
seems to level off, rather than continuing to decrease.
This may be because the resonance state is beginning to
spread onto other periodic orbits at these high field
strengths.

In summary, we have found a very strong correlation
between the photodetachment rate of a scarred resonance
state and the Lyapunov exponent of the unstable periodic
orbit on which the resonance state is scarred. This implies
a close quantum-classical correspondence, at least for a
resonance state that is scarred on a single unstable peri-
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odic orbit, even though the system is not in the semiclas-
sical regime. We would like to be able to extend this
analysis to other resonance states in this system, but
this cannot be done easily since the other resonance states
are peaked on multiple orbits including the stable orbit.
Lowering the value of �h used in the model might lead to
more resonance states that are peaked on a single unstable
orbit. This might also reduce the quantum fluctuations
that could lead to differences between the photodetach-
ment rate and the Lyapunov exponent. It is possible that in
the semiclassical limit ( �h ! 0) the photodetachment rate
and Lyapunov exponent will coincide.
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S. Watanabe, and F. B. Dunning, Phys. Rev. A 59, R4121
(1999).

[5] E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
[6] R.V. Jensen, M. M. Sanders, M. Saraceno, and B. Sun-

daram, Phys. Rev. Lett. 63, 2771 (1989); R.V. Jensen and
B. Sundaram, Phys. Rev. Lett. 65, 1964 (1990); B. Sun-
daram and R.V. Jensen, Phys. Rev. A 47, 1415 (1993).

[7] N. Ben-Tal, N. Moiseyev, and R. Kosloff, J. Chem. Phys.
98, 9610 (1993).

[8] T. Timberlake and L. E. Reichl, Phys. Rev. A 64, 033404
(2001).

[9] W. Schweizer, R. Niemeier, H. Friedrich, G. Wunner, and
H. Ruder, Phys. Rev. A 38, 1724 (1988); S. De Souza-
Machado, R.W. Rollins, D.T. Jacobs, and J. L. Hartman,
Am. J. Phys. 58, 321 (1990).

[10] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[11] N. Moiseyev, Phys. Rep. 302, 211 (1998).
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