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Detecting Subthreshold Events in Noisy Data by Symbolic Dynamics
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We show that a symmetric threshold crossing detector can be described by a symbolic dynamics of a
static three-symbol encoding which is highly efficient to detect subthreshold events in noisy nonsta-
tionary data. After computing instantaneous word statistics and running cylinder entropies, we
introduce a mean-field transformation of the three-symbol dynamics considered as a Potts-spin lattice
onto a distribution of two symbols. This transformed word statistics enables one to derive an estimator
of the signal-to-noise ratio (SNR). Subthreshold events are then proven by a prominent peak of the SNR
estimator as a function of the noise intensity.
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cross-correlation measures, one needs both the system’s
input and output signals. But in natural systems often

where J0�t� is the zero-order Bessel function of the first
kind that might be considered as a model ERP [cf.
The phenomenon of stochastic resonance (SR) occurs
in nonlinear dynamical systems such as bistable systems
[1,2] or threshold devices [3–5] when a weak input signal
is enhanced by the presence of a certain level of noise
(cf. [6,7] and references therein). SR has been observed
in many laboratory and natural systems, among others in
the earth system [1,8] and in neural systems, e.g., in ion
channels [9], in models of action potentials [10], in
neurons [11], in animal behavior [12], and eventually in
human perception using electroencephalography [13] and
event-related brain potentials (ERP) [14] (see also [15]).

In order to demonstrate SR, several measures are used.
On the one hand, these are linear spectral measures, such
as the power spectrum or the signal-to-noise ratio (SNR)
[2]. On the other hand, residence and escape time distri-
butions (interspike interval histograms) are used [16].
These measures have the disadvantage that they are
well-defined only for SR systems with periodic forcing
[10,17]. For the phenomenon of aperiodic SR the cross-
correlation coefficients between the input and output of a
SR device were suggested [10].

Symbolic dynamics is a natural way to describe data
which appear as sequences of discrete states, such as in
bistable systems, ion channels, or neurons. This approach
is based on a coarse-graining of the dynamics; i.e., the
time series are transformed into symbolic sequences by
using very few symbols. This way one loses some amount
of detailed information, whereas some of the invariant,
robust properties of the dynamics are kept [18]. There is a
bunch of measures of complexity which characterize such
symbolic strings [19], and some of them have been ap-
plied to data from SR devices such as stochastic bistable
dynamical systems and to a Schmitt trigger [20,21].
Dynamical entropies for proving SR have the same draw-
backs as spectral quantities: they apply only for systems
that are periodically driven. Furthermore, in order to
compute mutual information, Kullback information, or
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only the output time series are available. Experimentally,
SR becomes manifest as a maximum of the SNR (or of
the mutual information) depending on the noise ampli-
tude. Recently, we have suggested a SNR estimator based
on time averaged cylinder entropies obtained from a
symbolic dynamics which can be computed for any peri-
odic or broadband signal disturbed by additive noise. In
case of periodic signals we have proved the asymptotic
equivalence of this estimator with the linear SNR ob-
tained by spectral analysis [22].

In this Letter we demonstrate that symbolic dynam-
ics essentially exhibits SR when applied to noisy sub-
threshold signals. We make clear that the encoding itself
serves as an amplifier of the signal. Our approach re-
quires only a weak signal superimposed with noise; we
do not need any cross-correlation or mutual information
measures between signals. A further important advan-
tage of our approach is that it can be applied to nonsta-
tionary data which typically occur, e.g., in physiological
measurements, such as electroencephalogram or electro-
cardiogram. In order to achieve this we introduce a three-
symbol encoding of a noisy signal. We calculate the SNR
estimator from the instantaneous cylinder entropies
[22,23] after performing a mean-field transform of the
word statistics. This transformation maps a distribution of
three symbols onto one of two symbols and acts as a very
effective filter that should be appropriate for analyzing,
e.g., neurophysiological data such as patch clamp currents
of ion channels or subthreshold ERPs [14,17].

In their seminal work on SR in threshold systems Moss
et al. discussed a periodic signal A sin�!t� superimposed
with Gaussian colored noise [3]. We shall extend this to
nonstationary data here which are the typical cases of
neurophysiological data. We start by using a nonstation-
ary test signal. Let

x�t� � J0�t� � ��t�; (1)
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Fig. 1(a)], while ��t� is Gaussian noise with variance 	2

[4]. The first step of our approach is to apply a static three-
symbol encoding of this noisy signal

s�t� �

8<
:
0: x�t�<��;
1: jx�t�j � �;
2: x�t� > �;

(2)

where �� are the encoding thresholds [19]; this coarse-
graining is sketched in Fig. 1(b). To get a symbolic
dynamics, one also needs a discretization of time which
is obtained by sampling the measurement data. Since we
shall deal only with instantaneous measures of com-
plexity here, we allow for continuous time [24]. SR in
such a threshold system was treated by Gammaitoni [5].
Classically, Eq. (2) defines a symmetric level-crossing
detector [25], where a positive going delta spike at time
tk is emitted when x�tk� crosses the threshold � from
below, while a negative going delta spike at time tk is
emitted when x�tk� crosses the threshold �� from above.

The symbolic dynamics defined by Eq. (2) can be
interpreted as follows: A realization of the discrete-
valued signal s�t� is a sequence of the symbols ‘‘0,’’
‘‘1,’’ and ‘‘2.’’ Correspondingly, an ensemble of N reali-
zations can be considered as a matrix E � �si;t�i�N;t�L
of these symbols whose rows of length L are symboli-
cally encoded realizations of the process (1). A cylinder
set of length l is a set of rows drawn from the matrix E
which have a common building block of l symbols at a
certain instance of time t (for an instructive example
cf. [23]). For simplicity, we shall deal only with cylin-
ders of length l � 1. Let n0�t�; n1�t�; n2�t� be the num-
bers of occurrence of the symbols 0, 1, and 2 in the tth
column, respectively. The probability measures of the
symbols are then estimated by the relative frequencies
pk�t� � nk�t�=N. These probabilities constitute the in-
stantaneous word statistics that can be assessed by the
Shannon entropy which we refer to as cylinder entropy
[22,23]. The probability to observe the symbols 0 or 2 at
time t can be computed analytically yielding p0;2�t� �
0:5 erfcf
�� J0�t��=�

���
2

p
	�g. Eventually, we obtain the

probability of the symbol 1 as p1�t� � 1� p0�t� � p2�t�.
From these probabilities the (Shannon) cylinder entropy
is obtained as H�t� � �

P
3
i�1 pi�t� lgpi�t�. Next, we com-
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pute the time average of the entropy over a window width
�t around a time t,

G �
1

�t

Z t��t=2

t��t=2
H�t0�dt0: (3)

G measures the average disorder of the symbol distribu-
tion in the time interval 
t��t=2; t��t=2�. It has high
values when the noise causes many threshold crossings in
the vicinity of the maxima or minima of the test function,
i.e., aperiodic SR [10].

Recently, we have defined an estimator of the SNR
based on averaged cylinder entropies (3) [22]. For a
two-symbol encoding of periodic signals and l � 1 the
quantity

S � 0:5883�
�
1

G
� 1

�
(4)

has been proven to be asymptotically equivalent to the
linear SNR. Applying Eq. (4) to the symbolic dynamics
(2) in the high entropy regime would yield a minimum of
the estimator S. To obtain a maximum of S instead and
also to filter the symbolic time series by suppressing the
nonresonant regimes of the dynamics, we additionally
introduce a transform of the word statistics that is in-
spired by mean-field theory.

Let us consider again the matrix E � �si;t�i�N;t�L of a
finite ensemble of N realizations of the symbolically
encoded process (1) and (2). For a while, we shall view
this matrix as a �1� 1�-dimensional lattice of three-state
Potts spins [26]. The realizations of the symbolic dynam-
ics constitute a (virtual) space dimension of N lattice
sites. Next, we introduce the (spatial) magnetizations
M1�t� � p1�t� � p0�t�, M2�t� � p2�t� � p0�t� of the spin
lattice [27]. These quantities act as mean fields at the
spatial lattice dimension by defining the following spin
flip transformation:

p0
0�t� �

8<
:
p0�t�: M2�t� � M1�t� > 0;
p0�t� � p1�t�: M2�t� � M1�t�< 0;
p0�t� � p1�t�=2: else;

p0
1�t� � 1� p0

0�t�;

(5)

which transforms the three-symbol distribution into a
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FIG. 1. The zero-order Bessel func-
tion of the first kind as an ERP-like
nonstationary test signal (a), and the
three-symbol encoding technique of a
realization of the stochastic process
Eq. (1) where 	2 � 0:64.
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(a) (b) FIG. 2. Symbol statistics of the same
symbolic dynamics at the global
maximum of the Bessel function at
t � 0 depending on the noise inten-
sity for the encoding threshold � �
5:0. (a) Word statistics of the three-
symbol encoding. Solid: p0�t�;
dashed: p1�t�; dash-dotted: p2�t�.
(b) The mean-field transformed word
statistics [due to Eq. (5)]. Solid: p0

0�t�,
dashed: p0

1�t�.
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distribution of two symbols depending on the cylinder
measures p0�t�, p1�t�, and p2�t�.

The symbols 0 and 2 at the temporal lattice site t should
remain unchanged by this transform. But all 1’s will be
substituted either by 0’s or by 2’s depending on the
magnetizations at time t, respectively. This substitution
is defined as follows. We regard the resonance maximum
of the averaged cylinder entropy G�	� at 	� computed for
a time window around the maximum of the test signal at
t � 0. At this time the symbolic dynamics of the thresh-
old crossing device (2) provides probably many 2’s and
less 0’s, i.e., p2�t� � p1�t� � p0�t� or M2�t� � M1�t� � 0
[Fig. 2(a)]. In this case all 1’s will be flipped into 2’s. Since
there are only two symbols 0 and 2 after applying the
transform, we relabel the symbol 2 to 1. Now, the total
number of 1’s is given by n01 � n2 � n1, while the fre-
quency n00 � n0 remains unchanged. Hence, the relative
frequencies of 0’s and 1’s are given by p0

1 � p2 � p1 and
p0
0 � p0. The latter is just obtained by the first row of

Eq. (5) [cf. Fig. 2(b)]. Correspondingly, row two applies at
the local minima of the test signal when all the 1’s are
flipped into 0’s. The third row of Eq. (5) is important for
the nonresonant cases of the symbolic dynamics. First, it
applies to the case 	< 	� where the intermediate symbol
1 prevails. Here one-half of the 1’s will be randomly
substituted by 0’s and the other half by 2’s (relabeling 2
into 1 afterwards). Second, for 	 > 	� the symbol 1 dies
out but the transform acts exactly in the same way as for
	< 	�.

After applying Eq. (5), the distribution of three sym-
bols at the resonance is mapped onto a highly degenerated
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distribution of two symbols with low entropy and there-
fore a high SNR. On the other hand, the small noise
regime where the symbol 1 predominates and the high
noise regime where the symbol 1 gradually vanishes are
mapped onto nearly uniform distributions of two sym-
bols with high entropy and hence with a low SNR.
Additionally, the transform acts as an effective noise
filter. Figure 3 exhibits aperiodic SR as a distinct maxi-
mum of the SNR estimator S dependent on the noise level
	. Figure 3(a) displays the SNR estimator S�	� computed
by Eqs. (3) and (4) at t � 0 using �t � 1 after performing
the transform (5) for three different encoding thresholds
� � 4:5; 5:0; 5:5. The function S�	� is increasing for
small noise intensities, it reaches a first local maximum
at 	0 of the order of magnitude of the threshold. We
interpret this maximum of S�	� as the SR maximum
reported by Gammaitoni [5]. In our theory his SR in-
dicator A�	� is given by the distance between the dash-
dotted and the solid curves of Fig. 2(a). Comparing
Figs. 2(a) and 2(b) reveals that the maximum of his
A�	� corresponds also to a maximal difference of the
transformed word statistics and therefore of the SNR
estimator. But it is also easy to recognize that this phe-
nomenon could not be SR, since the prevailing symbol is
1. Aperiodic SR around the local maximum of the test
signal takes place when the condition p2 � p1 > p0 is
fulfilled. This is the case when the function S�	� suddenly
peaks at the resonant noise strength 	� depending on the
threshold �. This maximum of the SNR estimator corre-
sponds to low entropy of the mean-field transformed word
statistics [Fig. 2(b)]. On the other hand, Fig. 3(b) shows
15 20 25

(b) FIG. 3. SNR estimator S [Eq. (4)]
of the three symbol statistics of the
same system transformed to a two sym-
bol statistics according to Eq. (5) de-
pending on the noise intensity at t � 0
(�t � 1) for (a) different encoding
thresholds �. Solid: � � 4:5; dashed:
� � 5:0; dash-dotted: � � 5:5; (b) for
� � 5:0 and at different times.
Solid: t � 0; dashed: t � 2:5; dash-
dotted: t � 7.
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FIG. 4. Reconstructed test signal (modulo sign) using the
SNR estimator S�	�; t� [Eq. (4)] in a sliding window of width
�t � 1 (	� � 12, � � 5).
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S�	� for � � 5:0 at the first maximum (t � 0), around the
first zero (t � 2:5), and in the vicinity of the second
maximum (t � 7:0) of the test signal J0�t�. Again we
have used �t � 1. Varying �t has the effect that the
resonance peak is very sharp for smaller values and
becomes blurred for larger values of �t. The resonance
peak around the zero is due to threshold crossings at the
interval boundaries, but not due to the zero itself. Though
there is a (trivial) maximum of G�	� for the three-symbol
statistics in the absence of any signal, (e.g., at the zeros of
the test function) this maximum is no longer present after
the mean-field transform of the word statistics.

Finally, we show a reconstruction of the test signal by
plotting S�	� at the resonant noise strength (	� � 12) for
the threshold � � 5 against the center t of a sliding time
window of width �t � 1. This function, displayed in
Fig. 4, corresponds to the absolute value of the original
test signal J0�t�. The logarithmic plot reveals mainly the
global maximum at t � 0 with highly enhanced SNR.
However, the local extrema of the nonstationary test
signal are also recovered.

In this Letter we have reported our findings on sto-
chastic resonance in symmetric threshold systems that
are described by symbolic dynamics of three symbols.
An important step is to transform the three-symbol
word statistics into a distribution of only two symbols;
this map has been inspired by the mean-field theory of
�1� 1�-dimensional lattice spin systems. From the sym-
bolic dynamics thus obtained we have computed a SNR
estimator based on time averaged running cylinder en-
tropies. We have shown that SR is indicated by a distinct
sharp peak of the SNR. We have illustrated the mean-field
transform for the maxima and minima of a nonstationary
noisy test signal that shares typical properties with ERP
data, where local aperiodic SR takes place. In contrast to
previously reported results, we do not need any cross-
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correlation or mutual information measure to demon-
strate aperiodic SR. We have shown that the mean-field
transformation of the word statistics acts as a highly
effective filter. Our technique is promising for the analy-
sis of experimental data, especially if they are nonsta-
tionary and if only the output of the system under study is
available: both are typical cases in neuroscience and in
the earth sciences.
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