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Depinning by Fracture in a Glassy Background
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We force a single particle through a two-dimensional simulated glass of smaller particles.We find that
the particle velocity obeys a robust power law that persists to drive wells above threshold. As the single
driven particle moves, it induces cooperative distortions in the surrounding medium. We show
theoretically that a fracture model for these distortions produces power-law behavior and discuss
implications for experimental probes of soft matter systems.
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moves, the fewer particles it drags, and hence the expo-
nent � becomes larger than 1:0. We explicitly show that

fixed charge q � 0:086, with equal numbers of both
particles. The particles were rapidly quenched from
Recently, there has been considerable interest in the
behavior of systems of interacting particles that resist
flow, including vortex glasses in superconductors [1],
charge-density-wave metals [2], Wigner crystals [3],
dense colloidal suspensions [4,5], and Coulomb-blockade
arrays [6,7]. In each of these systems, quenched disorder
and repulsive interactions from the surrounding particles
prevent any individual particle from moving in response
to a small external force. As a result, below a threshold
force, the system behaves as a solid, while above the
threshold, the system can flow plastically and is soft
and disordered. Once the system depins, increasing the
force leads to rapidly increasing motion, as the speed and
transport response increase faster than linearly with the
flow over a range of applied force. Theories [6,8–10] have
attributed this anomalous transport to the concerted ac-
tion of many driven particles across a rough pinscape.
They predict power-law growth of the velocity with force
in the vicinity of a threshold force Fc : v � �F � Fc�

�. In
experiments and simulations, the velocity above threshold
has been observed to vary as a power � of the force, with
� in the range 1.5 to 2.2 [3,4,11,12]. In contrast to the
critical-state model of elastic depinning [8], where scal-
ing occurs only very close to threshold, the power law is
observed to hold for forces of several times the threshold
force.

In this work we demonstrate power-law collective
transport with a single driven particle in a disordered
glassy matrix of other nondriven particles in two dimen-
sions, realized via a molecular-dynamics simulation. We
find a power law with � � 1:5 over two decades of force
that is insensitive to the system size or the density of the
surrounding medium and appears when the driven par-
ticle is larger than the surrounding particles. This con-
trasts with a single particle driven over a substrate with
quenched disorder where a scaling of � � 1=2 is ex-
pected [8]. Our result suggests that the origin of the � >
1 scaling in a variety of systems may be simpler than
previously supposed. A single driven particle drags other
particles with it, thus slowing it down. The faster it
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an analysis in terms of fracture in front of the particle
gives � � 1:5. The fracture leads to a one-dimensional
(1D) plastic zone, which appears as a riverlike flow of
particles.While in other cases such rivers are attributed to
easy paths through a background of quenched disorder, in
our system the only disorder is due to the glassiness of the
medium. The plastic zone appears due to the softness of
the system; for stiffer interactions, the plastic zone dis-
appears and � � 1 is the observed scaling.

In addition to offering a simpler model of depinning,
our results are relevant to systems in which two species of
particles move in opposite directions with respect to each
other, as in certain electrophoresis experiments, pedes-
trian motion, self-driven particles, and molecular motors
[13]. Our model should apply to systems where the par-
ticles interact with a screened Coulomb interaction, such
as driving a single particle through a disordered colloidal
medium or driving a single dust particle in a disordered
dusty plasma [14].

Further, driving a single particle through a soft matter
system can be used as a powerful experimental probe of
dynamics of the medium far from equilibrium. For ex-
ample, in recent experiments a magnetic particle is
dragged through a colloidal system near the glass tran-
sition [5]. The absence of momentum conservation in our
system leads to very different physics from the transfer of
momentum through hydrodynamic and hard-core inter-
actions. Long-range hydrodynamic interactions are not
fully understood in these systems. However, such experi-
ments on colloidal systems and emulsions in confined
geometries between parallel walls, where the fluid can
give up momentum to the wall, may reduce the effect of
hydrodynamic interactions leading to a system like ours.

Simulations and dissipation balance.—We drive a
single particle with a charge qD at constant force through
a two-dimensional (2D) disordered system with periodic
boundary conditions in the x and y directions. To create a
glassy medium and prevent formation of a triangular
lattice, we simulate a mixture of two species of particles
with different charges qA � q and qB � 2q, for a given
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high temperature to zero temperature to produce a glassy
state. For the driven particle, we consider a range of
values from qD � 0:15q to qD � 60q, so that we consider
both qD < q and qD > q. The overdamped equation of
motion for particle i is �v � fi � �

P
j rU�rij� � Fdx̂x,

where v is the particle velocity, the damping coefficient
� � 1, and Fd � 0 on all particles except the one with
charge qD. We use a screened Coulomb interaction, given
by

U�rij� � qiqj
e�2rij

rij
; (1)

between particles i and j separated by a distance rij. We
have considered a variety of system sizes for N � 480 and
N � 2150 particles, as well as separately considering a
range of particle densities (this is equivalent to consider-
ing a range of screening lengths). Defining a lattice con-
stant a for the system by the lattice constant of a
triangular lattice with the same density, we considered
lattice constants from a � 1:085 to a � 2:3.

In Fig. 1 we show the positions of the particles and the
trajectories for a fixed number of time steps for a system
with N � 2100 particles at a drive Fd � 0:75. The driven
particle, marked as a large dot, has qD � 20. We find that
in general there is a finite threshold force Fc for the
particle to move. The perturbation of the other particles
by the driven particle is anisotropic, with a larger per-
turbation in the direction of drive than in the transverse
direction. Particles more than a few a away from the path
of the driven particle move elastically in small nearly
FIG. 1. The particle positions (black dots) and trajectories
(black lines). The driven particle (large dot) has charge qD �
20; the remaining particles are a mixture of qA � q and qB �
2q with a lattice constant of 1.085. There are a total of 2100
particles. The trajectories are drawn for a fixed number of time
steps with a constant applied drive of Fd � 0:75.
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closed orbits of radius less than a. Particles in front and
behind the driven particle exhibit plastic motion. This
plastic zone decreases in size for higher velocities.

The medium, while disordered, is a solid. It has a
threshold, Fd � Fc, for failure, and can support shear
stress. Thus, the particle must fracture the medium to
move through it. From momentum balance, we have that
at all times Fd � �V � �

P
vA, where V is the velocity of

the driven particle and the sum ranges over all other
particles. Below threshold, where the medium moves
with the particle, the momentum balance yields V �
Fd=N, where N is the number of particles. Above thresh-
old, to obtain power-law scaling, some large number n of
other particles, 1 � n � N, must move with the driven
particle, with some finite size corrections to scaling due
to net background motion of the remaining N � n par-
ticles. Eventually, as n ! 1 far above threshold, the ve-
locity returns to linear scaling.

In Fig. 2 (lower solid curve) we show the log-log plot
for the velocity versus applied drive Fd � Fc, for the
driven particle in Fig. 1, where Fc � 0:7 is the threshold
for the large particle to move. We find a good scaling with
a fit of � � 1:47
 0:03. We find a similar scaling for a
variety of other parameters with the exponents of 1:5

0:05. At sufficiently large drive, � returns to 1, as ex-
pected. The size of the scaling region decreases with
decreasing qD=q, until for qD=q < 1:0, no anomalous
scaling is observed. In this case the driven particle does
not induce plasticity in the other particles but only a
smaller perturbation of size less than a. In the upper solid
curve in Fig. 2 we show the velocity force curve for qD �
0:5 showing a scaling fit with � � 1:0. For a fixed value
of Fd the velocity decreases with increasing qD as the
driving particle interacts more strongly with the sur-
rounding particles. In Fig. 3(b), V vs qD for Fd � 4:0
shows a q�1=2

D scaling in the regime where there is plastic
deformation, and then V flattens out in the elastic regime
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FIG. 2. The velocity V vs FD � Fc for (upper solid curve) a
driven particle with qD � 0:5. The upper dashed curve is a fit
with � � 1:0. The lower solid curve is for qD � 20, with the
lower dashed curve a fit with � � 1:47.
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for qD < 1. Additionally in the plastic flow regime the
particle motion is highly intermittent as illustrated in
Fig. 3(a), where a time trace of V for qD=q � 20:0 shows
the motion occurring in bursts separated by quiet periods.
As the drive increases, the motion becomes less intermit-
tent, and the noise spectrum of the time trace develops a
well-defined rollover frequency !, with ! scaling ap-
proximately linearly in Fd � Fc. We find that the rollover
frequency corresponds to the time scale between peaks in
Fig. 3(a), rather than to the duration of a single peak.

In Fig. 4, we show a contour plot of the average of v2

for the other particles in the medium, as a function of
position relative to the driven particle, for systems with
qD=q � 20, N � 2100, a � 1:085, and Fd � 0:9; 1:5; and
40, respectively. This measures energy dissipation, as
from energy balance FdV � ��V 2 �

P
v2

A�. These sys-
tems are above the depinning threshold of 0:7, but still
within the scaling regime. The dissipation is centered
strongly around the moving particle and extends aniso-
tropically into the surrounding medium, with a larger
region of dissipation in the direction of drive.

Theory: elasticity and fluid flow.—We now consider
various scenarios for the particle motion to understand
the simulation results. We begin by considering the re-
sponse of the medium away from the plastic zone, where
the particles move less than a and elasticity theory is
applicable. The driven particle exerts a force on the
elastic medium at a location that is moving at velocity
V . At long wavelengths, elasticity theory gives for a
lattice displacement ~uu� ~kk� the equation of motion

_~uu~uu� ~kk� � C1
~kk� ~kk � ~uu� � C2

~kk � � ~uu � ~kk�: (2)
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FIG. 3 (color online). (a) The velocity versus time for a
fixed drive of FD � 0:75 with qD � 20, showing intermittent
bursts of motion. (b) The velocity versus qD for a fixed drive
Fd � 4:0. The solid line is a fit of q�1=2

D .

098302-3
To obtain elastic constants C1; C2, we consider a triangu-
lar lattice of particles, with appropriate lattice constant a,
and assume that all particles have the same charge,
qA;B �

���
2

p
q. For a lattice constant a � 1:085, one finds

C1 � 0:025=�, C2 � 0:0018=�. The particle exerts a
force on this medium, along the direction of motion of
the particle. There is also a force normal to this direction,
pushing the medium out sideways in opposite directions
on opposite sites of the moving fracture. In the comoving
frame, the displacement in any given direction decays
exponentially at large distance with a characteristic
length l � C1=V along that direction and l � C2=V nor-
mal to the direction. The energy dissipation rate resulting
is of order �V 2�l=a�2 � �C1C2=a2, and is thus indepen-
dent of V . This indicates a force on the driven particle of
order 1=V , in addition to the drag force, �V , on the driven
particle. For small V , this force becomes arbitrarily large,
ultimately exceeding the yield stress of the medium. In
such a region the material must yield and the elastic
picture becomes invalid.

Thus, we must consider the plastic zone. It is not
consistent to have a 2D chunk of solid moving with the
particle, with a plastic zone between that solid and the rest
of the medium: if the particle force is sufficient to frac-
ture the medium, it would fracture the solid moving with
it. At the same time, one cannot have a 2D fluid zone
around the particle. The overdamped nature of the dy-
namics (assuming viscosity and pressure terms like a
Newtonian fluid) would concentrate all the vorticity of
the fluid within a length a around the particle, and thus
this scenario is also inconsistent: more than a length a
from the particle, the stress is too small to fracture the
medium and produce the fluid. By elimination we turn
next to a 1D plastic zone.
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FIG. 4. Contour plot of v2 as a function of position relative to
the driven particle. The lowest contour is normalized to 5% of
the maximum of v2, and each contour represents a 10%
increase. The system size is 48� 48, and the driven particle
position is fixed to �24; 24�.
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Theory: compressed column.—We now propose a sce-
nario based on competition between shear and compres-
sive failure which accounts for all the numerical results
and illustrate it using the specific systems of Fig. 4. The
driven particle creates a fracture in front of it. Naively the
fracture force would be expected to be of the order of
the particle interaction force aU00�a�, or roughly 0:015 for
the given qD � 20. In fact, it is equal to 0:7, nearly
2 orders of magnitude greater, for two reasons: the force
U0�r� rises rapidly at short r, while the charge qD > q
further increases the fracture force. After fracture, the
particles in front of the driven particle must then move
out of its way, either by failing in shear and moving along
with the driven particle, or by failing in compression and
moving transversely out of its way. Initially, consider just
the first possibility so that in front of the driven particle
there is a growing 1D column of particles failing in shear.
One finds that the rate at which this length increases is
determined not by the velocity of the driven particle, but
by the (faster) velocity at which a compressive front
ahead of that particle moves. 1D elasticity theory would
imply that in time t, this compression reaches a distance
l � a

��������������
U00t=�

p
. Since this system is far from equilibrium,

we have checked this result by simulating a 1D system
with a single driven particle in a fixed, periodic back-
ground potential to mimic the medium. We find that this
behavior remains valid, even close to the depinning tran-
sition, albeit with a greatly increased value for U00.

The 1D column does not grow indefinitely in length
due to the possibility of transverse motion of the par-
ticles, in which case they squirt out of the column. The
time scale for this process would naturally be of order
�a=�Fd � Fc�. Thus, the number of particles in the col-
umn is l=a �

���������������������������������
U00a=�Fd � Fc�

p
. By momentum balance,

this number is equal to �Fd � Fc�=�V , giving

v / �Fd � Fc�
3=2; (3)

as observed, where some fixed force Fc is required to
create the fracture. The exit of particles from the column
due to compressive failure is naturally highly intermit-
tent, leading to intermittent motion of the driven particle,
as seen in Fig. 3(a). This predicts the linear scaling of
the rollover frequency with Fd � Fc, with the prefactors
such that the rollover frequency is increased above the
naive expectation: at Fd � 1:5, ! � 0:05, larger than
�a=�Fd � Fc�.

The 1D plastic zone is visible in the contours shown in
Fig. 4. The aspect ratio of the contour increases for lower
drives as the length of the contours increases at constant
width, confirming that dissipation arises in a 1D plastic
zone, rather than due to the elastic response of a 2D
medium which would instead give a constant aspect ratio.
Further, the size of the contours is not consistent with 2D
elastic response, which would appear in Fig. 4(b) as an
exponential decay of the dissipation on a length scale of
098302-4
approximately 0:35 for V � 0:072, while the actual con-
tours are significantly larger.

As the charge of the driven particle increases, it pro-
duces a depletion zone of missing particles around it to
compensate its charge; the area of this zone is propor-
tional to qD=q. The length of the compression was deter-
mined above; the width will be proportional to the radius
of the depletion zone,

������������
qD=q

p
, accounting for the scaling

of velocity with qD, as seen in Fig. 3(b).
Summary.—We have found a robust power law for the

velocity of a single driven particle fracturing a glassy
environment of smaller particles, with � � 1:5
 0:05.
We give a theoretical explanation based on a 1D plastic
zone, which decreases in size as the particle moves faster
leading to � > 1. This behavior arises due to the softness
of the material, as for larger lattice constants a or smaller
qD, the interaction becomes stiffer, and the width of the
scaling region decreases until it eventually disappears
leaving only linear scaling. While for conventional solids
this scaling region is absent with no column observed in
front of the particle, the origin of anomalous transport
features in many disordered systems may be due to the
mechanisms discussed herein. Our results could be tested
for driving a single colloid through a glassy colloidal
assembly, a disordered dusty plasma, or a vortex lattice
past a small density of pinning sites.

We thank Eric Weeks for sharing his experimental
results which inspired this work. We thank Tom Witten
for many very useful discussions and for a critical reading
of the manuscript. This work was performed at the Non-
Equilibrium Summer Institute at Los Alamos. This work
was supported by DOE Contract No. W-7405-ENG-36.
[1] G. Blatter et al., Rev. Mod. Phys. 66, 1125 (1994).
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