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Dynamic Localization in Quantum Dots: Analytical Theory
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We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-
dependent perturbation ��t�. Assuming the dot to be described by random-matrix theory for the
Gaussian orthogonal ensemble, we find the quantum correction to the energy absorption rate as a
function of the dephasing time t’. If ��t� is a sum of d harmonics with incommensurate frequencies,
the correction behaves similarly to that for the conductivity ��d�t’� in the d-dimensional Anderson
model of the orthogonal symmetry class. For a generic periodic perturbation, the leading quantum
correction is absent as in the systems of the unitary symmetry class, unless ���t� �� � ��t� �� for
some �, which falls into the quasi-1D orthogonal universality class.
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example shows that DL is not a consequence of the one-
dimensional character of the energy space but it depends

For a periodic ��t� � n Ane
�in!t with jAnj2 decreas-

ing as 1=n3 or slower, W diverges as N ! 1 and the
The process of energy absorption by a quantum system
with a time-dependent Hamiltonian underlies a large part
of modern physics, both fundamental and applied. A
generic Hamiltonian can be written in the form

ĤH�t� � ĤH0 � V̂V��t�; (1)

where we explicitly separated the time-independent part
ĤH0 and the external perturbation V̂V with the time depen-
dence specified by a given function ��t�. Most often the
relevant case is that of the classical Ohmic Joule absorp-
tion. The simplest nonlinear effects that restrict the ab-
sorption rate are the saturation effects originating from
an upper bound on the spectrum of ĤH0.

In the past two decades, attention of the scientific
community was drawn to a different and much less trivial
example of saturation when the spectrum of H0 is essen-
tially unlimited in the energy space, yet after a certain
time the absorption stops. This so-called dynamic local-
ization (DL) in the energy space was observed in numeri-
cal simulations of the kicked quantum rotor (KQR)—
particle on a circle with ĤH0 � �@2=@
2 and ��t� being a
periodic sequence of � pulses [1], as well as in an actual
experimental realization of the KQR—trapped ultracold
atoms in the field of a modulated laser standing wave [2].
Mapping of the KQR to the quasirandom 1D Anderson
model has been done in Ref. [3], and a similar analogy
was exploited in Ref. [4] to demonstrate the DL in a
mesoscopic disordered ring. In Ref. [5] an analogy be-
tween the KQR and band random matrices was pointed
out; the latter have been reduced to a 1D nonlinear �
model [6]. In Ref. [7] the direct correspondence between
the KQR and a 1D nonlinear � model was demonstrated.

However, numerical simulations for a �-kicked particle
in an infinite potential well differing from the KQR only
by the boundary conditions revealed no DL [8]. This
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on the details of both the unperturbed system and the
perturbation. Therefore, the results on DL [3] for the
standard map [1] cannot be automatically applied to a
generic quantum-mechanical system under arbitrary
time-dependent perturbation. Even less clear is the status
of a peculiar KQR model with the time-dependent per-
turbation with three incommensurate periods where the
phenomenon similar to the 3D Anderson localization-
delocalization transition has been found numerically [9].

The most general assumption about a complex quantum
system would be the randomness of the Hamiltonian. It is
well known [10] that at energies smaller than the
Thouless energy Ec description of complex quantum sys-
tems falls into one of the three universality classes, each
corresponding to a Gaussian ensemble of random matri-
ces. Considering a nonmagnetic electron system with
the spin-rotation symmetry, we arrive at Eq. (1) with
ĤH0 and V̂V from the Gaussian orthogonal ensemble
(GOE). An analogous Hamiltonian was considered in
connection with laser pumping of complex organic mole-
cules [11], but DL was not a target at that stage. The
problem of DL in systems described by the Hamiltonian
(1) has been addressed in Ref. [12]. However, most results
of this study were qualitative in character. The DL found
in Ref. [12] numerically for a harmonic perturbation in
the GOE was unstable with respect to adding even a small
amount of noise in the time dependence.

In this Letter, we develop an analytical theory of DL
for a closed system described by the Hamiltonian (1) with
ĤH0 and V̂V from the GOE of N � N random matrices
(RMT) and a generic time dependence ��t�. In the limit
N ! 1 the existence of DL and even of the classical
Ohmic Joule regime with constant absorption rate de-
pends strongly on the character of ��t�. We calculate the
first (one-loop) quantum interference correction �W to
the absorption rate W, which determines the weak DL.P
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classical Ohmic regime does not exist. For An decreasing
rapidly, �W could be significant only if the condition

���t� �� � ��t� �� (2)

is fulfilled for some �. In this case, �W�t� is negative and
grows as

��
t

p
with the time t of the action of the time-

dependent perturbation, such as in the quasi-1DAnderson
localization (AL) in the orthogonal symmetry class. �W
becomes comparable with the Joule absorption rate W0 at
some time t�, indicating a crossover from the weak to the
strong localization in the energy space. If the system
dephasing time t’ < t� the dissipation remains Ohmic,
with the rate smaller than W0 by the value of �W�t’�. A
periodic ��t� with several harmonics obeys Eq. (2) only
for a special choice of relative phases. However, Eq. (2) is
satisfied by any single-harmonic function, making the
latter rather an exception than a paradigm of a periodic
perturbation. For periodic functions not obeying Eq. (2)
the time-dependent quantum correction emerges only in
the two-loop approximation, as in systems of the unitary
symmetry class. Finally, we find that for ��t� being a sum
of d harmonic functions with incommensurate frequen-
cies the first quantum correction to the absorption rate is
similar to the weak localization correction to conductiv-
ity of a d-dimensional disordered system of the orthogo-
nal symmetry class.

Qualitative picture.—The similarity and differ-
ence between DL and AL, as well as between KQR
and RMT, can be seen from the exact correspondence
between a quantum system under a (multi)periodic time-
dependent perturbation and a tight-binding lattice model
with the time-independent Hamiltonian. Consider a sys-
tem with energy levels (‘‘orbitals’’) El under a harmonic
perturbation Vll0e�i!t � V�

l0le
i!t. As follows directly from

the Schrödinger equation, its time evolution can be ex-
pressed in terms of eigenfunctions and eigenvalues of
another system (see Fig. 1), obtained from the original
one by replicating it into a one-dimensional lattice and
shifting the levels of each consequent site by �h! so that
the energy of the orbital l on the site s is given by El;s �
El � s �h!, and introducing the coupling between the lth
orbital of the site s and the l0th orbital of the site s� 1 by
the stationary perturbation matrix element Vll0 . In the
same way one can show that higher harmonics in the
perturbation (2!; 3! . . . ) correspond to the coupling to
l

l

lω

ω

Vll’

Vll’

−1 1

FIG. 1 (color online). Lattice analogy for a system under a
monochromatic perturbation.
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next neighboring sites (s� 2, s� 3, . . . ), while the pres-
ence of several incommensurate frequencies !1; . . . ; !d
requires a d-dimensional lattice with sites s � �s1; . . . sd�,
on-site energies El � s1!1 � 
 
 
 � sd!d, and the matrix
element V�i�

ll0 at the ith frequency corresponding to the
coupling along the ith dimension.

From this picture it is clear why DL does not exist in
RMT for slowly decreasing An. It happens because of the
possibility of long-range hops over many sites. In the
KQR case long-range hops are not so dangerous for
localization because in the standard KQR model, the
time-dependent perturbation corresponding to An �
const is coupled to cos
, which in the basis of eigenfunc-
tions eil
 of ĤH0 corresponds to matrix elements Vl;l�1 that
may connect only neighboring orbitals. For a long enough
distance between sites the coupled orbitals are out of
resonance and the hopping is suppressed. For an infinite
potential well [8] the basis is sin�l
�, Vl;l0 / 1=jl� l0j are
long-range in the orbitals’ space, so that the resonance
hopping between remote sites may still occur, though
only between remote orbitals. For the RMT Vl;l0 do not
decrease with the distance jl� l0j, but only neighboring
sites are coupled for a harmonic ��t�. This shows that the
KQR with � kicks and the time-dependent RMT with
harmonic ��t� are in fact two complementary models.

Description of the formalism.—Consider a closed
system of noninteracting fermions with the single-
particle Hamiltonian (1), ĤH0 and V̂V being real symmetric
Gaussian random N � N matrices with correla-
tors h�H0�mn�H0�m0n0 i � N��=��2��mn0�nm0 � �mm0�nn0 �,
hVmnVm0n0 i � ���=����mn0�nm0 � �mm0�nn0 �, � being the
mean level spacing at the band center, and � measur-
ing the sensitivity of the energy levels El to variations
of �. Such a form of time-dependent random-matrix
theory corresponds to a quantum dot under a perturbation
with characteristic frequencies ! � Ec [13].

To treat the dynamical problem (1) we employ the
nonlinear � model recently developed in Ref. [14] on
the basis of Keldysh nonequilibrium formalism [15,16].
In the limit N ! 1 the effective action of the � model
reads:

S�Q� �
Z �

�i
2�

trfi�3�0�tt0@tQtt0 g

�
��
8�

���t� ���t0��2trfQtt0Qt0tg

�
dt dt0: (3)

Here Qtt0 is a 4� 4 matrix in the direct product of
the 2� 2 particle-hole and Keldysh spaces. Pauli matri-
ces in these spaces are denoted by �i and �i, respectively
(�0; �0 being the unit matrices). The first term in S is the
standard random-matrix action [17] responsible for the
whole spectral statistics, while the second, kinetic, term
accounts for the effects of the time-dependent pertur-
bation. The matrix Q is subject to the constraints
�Q2�tt0 � �0�0�tt0 and �2�1Q�1�2 � QT , where the prod-
uct and the transpose involve the time arguments, too.
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FIG. 2. Dephasing rate (�t� � (�t; '� averaged over ' vs t:
(a) periodic ��t� obeying Eq. (2): a regular array of zeros;
(b) generic periodic ��t�: a gap; (c) quasiperiodic ��t� with two
incommensurate frequencies: a pseudogap.
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The saddle point of the action (3) is

�tt0 �

�
�tt0 2F�0�

tt0

0 ��tt0

�
��3; (4)

where the function F�0�
tt0 satisfies the kinetic equation

f@t � @t0 � ����t� ���t0��2gF�0�
tt0 � 0: (5)

Ftt0 is the electron distribution function in the time rep-
resentation; a more familiar quantity is its Wigner trans-
form FE�t� �

R
d�eiE�Ft��=2;t��=2. In equilibrium with

temperature T it is FE � tanh�E=2T�. Out of equilibrium
it satisfies the Wigner-transformed Eq. (5), which after
averaging over fast oscillations in t reduces to the diffu-
sion equation in the energy space:

�@t �D@2E�F
�0�
E �t� � 0; D � ��@t��2; (6)

the overline meaning the average over time. Equation (6)
gives Ohmic Joule absorption rate

W0 � D=�: (7)

The saddle-point expression (7) is valid provided that
(i) the perturbation is sufficiently fast, j@t�j � vK �
�3=2��1=2, which is the antiadiabaticity condition, and
(ii) interference effects responsible for DL are neglected.

The perturbative correction to Eq. (7) at finite values of
j@t�j=vK was calculated in Ref. [14] for the case of a
monotonic, linear bias ��t� � vt. There the interference
leading to DL is ineffective and the correction is positive
which is a remnant of the Landau-Zener regime of dis-
sipation [18]. Here we focus on the limit where Landau-
Zener corrections are weak and concentrate on the case
of re-entrant ��t�, when the saddle-point approximation
is invalidated by the DL interference effects.

Quantum corrections to the mean-field absorption rate
(7) can be obtained in the regular way by expanding over
Gaussian fluctuations near the saddle point. The deviation
of the Q matrix from � is parametrized [14] by the
diffuson and cooperon modes btt0 and att0 with the bare
propagators: hbt�t�b

�
t0�t

0
�
i � �2�=����' � '0�D'�t; t

0�
and hat�t�a

�
t0�t

0
�
i � ��=����t� t0�Ct�';'

0�, where [13]

D'�t; t0� � 
�t� t0� exp
�
�
Z t

t0
(��; '�d�

�
; (8)

Ct�';'
0� � 
�'� '0� exp

�
�
1

2

Z '

'0
(�t; ��d�

�
; (9)

and we have denoted t� � t� '=2, t0� � t0 � '0=2, and
(�t; '� � � ���t�� ���t���2. In the presence of fluctua-
tions, the average matrix hQi still has the form (4) but
with F�0� substituted by the renormalized electron distri-
bution F which determines the energy absorption rate:

W�t� � @thE�t�i � �
i�
�

lim
'!0

@t@'Ft�'=2; t�'=2: (10)

The first quantum correction to hQi contains a loose
diffuson [13] with a cooperon loop at the end. We evalu-
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ate this diagram for a generic perturbation ��t� switched
on at t � 0. Using the asymptotics Ft�t� � �i�'��1 fol-
lowing from the property limE!�1 FE�t� � �1, we ob-
tain for the absorption rate:

W�t� � W0 �
�

�

Z t

0
@t��t�@t��t� )�Ct�)=2�);�)�d):

(11)

Expression (11) is the main result of this part of the
Letter and will be the base for the subsequent consider-
ations. It can also be obtained from the conventional
diagrammatic technique [13,19].

Results.—First, we consider a periodic perturbation:
��t� �

P
n An cos�n!t� ’n�. To study the long-time,

period-averaged dynamics at t; ) � 1=! we can approxi-
mate Ct�)=2�);�)� � e�) (�t�)=2�, where

(�t� � 2�
X
n

A2
n sin

2�n!t� ’n�: (12)

For a particular choice of phases, ’n � n’, there exists a
set of points )k � 2t� 2�’� �k�=! with integer k
where the dephasing rate (12) is equal to zero [Fig. 2(a)].
Existence of such no-dephasing points [20] is equiva-
lent to the generalized time-reversal symmetry (2) of
the perturbation. At large �) only ) � )k contribute
to the integral (11) (otherwise the cooperon is exponen-
tially small) which then can be calculated with the
steepest descent method. Performing summation over
the no-dephasing points )k, we obtain a quantum inter-
ference correction to the Ohmic absorption rate (7):

W�t�
W0

� 1�

����
t
t�

s
; t� �

�3�n2

2�2 �
�3W0

!2�
; (13)

where n2 �
P

n n
2A2

n and the limit t � 1=!; 1=� is im-
plied. Note that both the diffusion coefficient D �
!2�n2=2 and t� are finite only if An decrease as n�3=2

or faster. If it is not the case (� kicks), the diffusion
coefficient D, the Joule absorption rate W0, and the time
t� diverge. In real systems this divergence is limited by
the condition of validity of RMT n! � Ec.
096801-3
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The
��
t

p
dependence is remarkably similar to the

�����
t’

p

dependence of the first quantum correction to the con-
ductivity of a particle in a quasi-one-dimensional disor-
dered sample with the phase relaxation time t’ [21]. In
our case the relative quantum correction becomes com-
parable to unity at time t�. This is an indication of DL
at the characteristic energy scale E� �

��������
Dt�

p
�!�n2=�.

Taking � � 3 +eV, �h! � 40 +eV (!=2� � 10 GHz),
�n2 � 10 +eV (corresponding to the microwave electric
field of a few V=m over the dot size of 1 +m), we obtain
t� � 10 ns, E� � 400 +eV� 5 K, while typical values of
the Thouless energy are Ec � 100–1000 +eV.

When the generalized time-reversal symmetry (2) is
absent for ��t�, the dephasing rate (�t� is positive and
separated from zero by a finite gap [Fig. 2(b)]. In this case
the integral in Eq. (11) converges exponentially, so the
first quantum correction stays small even at t! 1, as in
the systems of the unitary symmetry class.

Finally, we consider the case of d incommensurate
frequencies !n: ��t� �

Pd
n�1 An cos�!nt� ’n�. Here

the relationship between the phases ’n does not matter.
The reason is that in the incommensurate case the de-
phasing rate can become arbitrarily small in an infinite
number of points regardless of phases [Fig. 2(c)], and the
integral is dominated by these nearly no-dephasing
points.

The cooperon with the dephasing rate (12), where n!
is substituted by !n, can be expanded in a d-dimensional
Fourier series involving the modified Bessel functions
I-�z�. Averaging it over t is significantly simplified due
to incommensurability, but the analytical expression for
arbitrary amplitudes An is still bulky. We write the result-
ing expression valid at t � 1=!; 1=� when all An � 1:

W�t�
W0

� 1�
�
��

Z �t

0
dz e�zd�I0�z��d�1 dI0�z�

dz
: (14)

Using the asymptotic form I0�z� � dI0�z�=dz � ez=
���������
2�z

p

at z � 1, we recover Eq. (13) for a harmonic perturba-
tion. For d � 2, the relative correction is ��=2�2�� ln�t,
whereas for d > 2 it saturates / �const� t1�d=2 in the
limit of large t, in complete analogy with the behavior of
the quantum correction of Ref. [21] in d dimensions.
Equation (14) is relevant also for rational ratios!n=!m �
P=Q, P�Q � 1 provided that t� Q2=�.

In conclusion, we have developed an analytical ap-
proach based on the zero-dimensional, time-dependent
nonlinear sigma model and obtained the weak dynamic
localization in complex quantum systems under time-
dependent perturbation described by the random matrix
theory. The character of energy absorption in such sys-
tems is determined entirely by the frequency spectrum of
a time-dependent perturbation. In particular, we obtained
no DL for the time-periodic �-function perturbation, and
the dynamical localization corrections similar to the
096801-4
d-dimensional weak localization corrections to conduc-
tivity if the perturbation is a sum of d incommensurate
harmonic functions.
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