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Scaling Properties of Pinned Interfaces in Fractal Media
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Experimental data for rupture lines and wetting fronts in various kinds of paper suggest that the
scaling properties of interfaces pinned in such fractally correlated media are governed by the fractal
dimension, D, of the medium. Specifically, the phenomenological relation � � D� �d� 1�, where d is
the spatial dimension of the system, satisfactorily describes the local roughness exponent, � , of a pinned
interface. The relation is supported by analysis of the competition between an elastic restoring force and
correlated pinning force in an elastic fractal media, under the assumption that the pinning force
correlations decaying with distance, r, as r�� with 0<� � d�D< 1.
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long-range correlations in fractal media on the scaling
properties of pinned interfaces. with constant ratio �c=‘c � exp�2:5� � 12:18 for four
It is well established that for sufficiently strong driving,
the interface feels an effective smeared out thermal noise
and its fluctuations present all the typical phenomena of
scale invariance of driven systems [1–3]. Specifically,
a moving interface may be characterized by the fluctua-
tions of the height around its mean value. So, a basic
quantity to look at is the global interface width,W�L; t� �
fhh�x; t� � hhiLi

2
Lg
1=2, where the h	 	 	iL denotes an average

over all x in a system of size L and f	 	 	g denotes an
average over different realizations. It has been found,
that in many cases, W�L; t� scales according to the
Family-Vicsek ansatz [1–3] as W�L; t� � t�=zf�L=t1=z�,
where the scaling function f�y� behaves as y�, if y
 1,
or f�y� � const, if y� 1. The global roughness exponent
� and the dynamic exponent z characterize the universal-
ity class of the dynamic roughening model under study
[1–3]. The Family-Vicsek ansatz can be also applied to
describe the scaling behavior of the local interface width,
w�	; t� � fh�h�x; t� � hhi	
2i	g1=2 � t�=zf�	=t1=2�, where
h	 	 	i	 denotes an average over x in a window of size	 [1].
In the absence of any characteristic length in the system,
the local behavior of interface is characterized by the
same scaling exponents as the global one, but generally,
the local roughness exponent � is less or equal to the
global one, i.e., � � � [2].

In the opposite case of weak driving, the quenched na-
ture of spatial heterogeneities becomes apparent and the
interface reaches a pinned state, characterized by com-
pletely different roughness exponents [1]. Experimental
values of the local roughness exponent for a large variety
of significantly different systems vary in the relatively
narrow interval 0:4 � � � 0:9 [1–5]. This, together with
the prediction of some popular theoretical models, has led
to the universality hypothesis, according to which � can
take only certain universal values [1,6,7]. At the same
time, the universality hypothesis has been questioned in
some theoretical [8,9] and experimental [10] works. The
purpose of the present work is to understand the effect of
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To gain insight into this problem we have performed a
study of interfaces formed in five papers characterized by
different fractal dimensions of their fiber structure and
their pore space (see Table I and Refs. [5,11–15]). It is
important to note that three kinds of ‘‘filtro’’ paper and
‘‘secante’’ paper are made from the same wood fibers (see
Table I), while the ‘‘toilet’’ paper is made from fibers of
a different kind. It should also be noted that the thick-
ness, areal density, density, and the porosity are not con-
stant for a given paper; rather the values vary from
sample to sample in accordance with a normal distribu-
tion with means given in Table I, where �r � �=�o is
the relative density, �o is the fiber density, and P �
100�1� �r� is the porosity. Furthermore, we note that
according to criterion [14], the toilet paper should be
treated as a two-dimensional fiber network (d � 2), while
the filtro and secante papers should be treated as three-
dimensional networks (d � 3).

The fractal dimension, Dfiber, of the fiber network
for each paper was determined using � radiography (for
details, see [5,11]) from the scaling behavior of the
two-point density fluctuation correlation function [see
Fig. 1(a)], as defined by

C� ~RR� � h�m� ~xx� � �mm
�m� ~xx � ~RR� � �mm
i / j ~RRj��; (1)

where m is the local basis weight, �mm its average, and the
brackets denote an average over the sample. The scaling
behavior (1) is observed within the interval ‘0 <R< �c,
where ‘0 is the average fiber width and �c is the correla-
tion length, 135 � �c=‘0 � 840 (see Table I). The density
correlation exponent � � d�Dfiber displays consider-
able variations from sample to sample in accordance
with a normal distribution: see Fig. 1(b). Furthermore,
as follows from the plot in Fig. 1(c), the relative densities
of the papers satisfy the fractal relation

� � �o

�
�c
‘c

�
��

(2)
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TABLE I. Properties of five kinds of paper and scaling exponents of rupture lines and wetting fronts.

‘‘Filtro’’ paper (d � 3 [5]) with (4) ‘‘Secante’’ (5) ‘‘Toilet’’
(1) Open (2) Medium (3) Closed Paper Paper [5,18]
Porosity Porosity Porosity (d � 3 [5]) (d � 2 [17])

Thickness, mm 0.321 0.251 0.211 0.338 0.110
Areal density, kg=m2 0.1284 0.1034 0.1024 0.1999 0.0368
Density, kg=m3 400.09 411.95 485.76 591.28 334.55
Young modulus, GPA 1:12� 0:15 1:57� 0:20 2:02� 0:25 3:55� 0:35 0:17� 0:07
Fiber width, ‘0, mm 0:04� 0:03 0:04� 0:03 0:04� 0:03 0:04� 0:05 0.03
Fiber density, kg=m3 1494 1494 1494 1494 	 	 	

�c, mm [from Eq. (1)] 6� 2 14� 5 20� 7 22� 9 34� 10
� [expt. (1)] 0:53� 0:05 0:51� 0:05 0:45� 0:04 0:37� 0:03 0:25� 0:03
‘c � �c=12:15; mm 0.49 1.15 1.65 1.81 ?
Dfiber � d� � 2:47� 0:05 2:49� 0:05 2:55� 0:04 2:63� 0:03 1:75� 0:03
Dfiber [expt. (2)] 2.47 2.49 2.55 2.63 1.75 (box)
�crack (3) 0.47 0.49 0.55 0.63 0.75
�crack (expt.) 0:45� 0:01 0:48� 0:01 0:56� 0:01 0:65� 0:03 [5] 0:75� 0:05
�crack (expt.) 0:62� 0:05 0:67� 0:05 0:80� 0:05 � � � [5] 	 	 	

Relative density 0.2681 0.2761 0.3255 0.3956 ?
Porosity, % 73.2 72.4 67.5 60.4 ?
�wet (expt.) 0:785� 0:035 0:76� 0:03 [13] 0:70� 0:03 0:63� 0:03 [13] 0:5� 0:1
Dpore (5) 2.79 2.76 2.70 2.63 1.5
Dpore (4) 2.78 2.77 2.72 2.65 ?
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kinds of the papers studied. (Here ‘c is the characteristic
size of the fiber network; see Table I.)

Experiments were performed on rectangular paper
sheets of different widths, L � 5, 10, 15, 20, and 25 cm,
and of length 25 cm. Cracks were produced in a uniaxial
tension test of specimens with a straight cut of length
0:25L [17], carried out on a 4505 INSTRON testing
machine with a constant deformation rate (the crack
roughness exponent does not depend on the deformation
rate [13,17]). The wetting fronts were formed in imbibi-
tion experiments with black Chinese-ink solution (see
[18]) carried out under carefully controlled temperature
T � 20� 3 �C and humidity 38%� 6%. Each experi-
ment was repeated 30 times, so for each kind of paper
we obtain 150 wetting fronts and 300 rupture lines (in
sheets of five different widths). The rough interfaces were
scanned in black and white in the bit map (.bmp) format
[12]. Then, the profiles of each interface were plotted
using Scion-Image software [12] as single-valued func-
tions h�x�, see Figs. 2(a) and 2(b); in the case of overhangs
h�x� refers to the highest point at x. The scaling properties
of each interface were studied using five different statis-
tical methods adopted in the BENOIT 1.2 software [5,19]:
the variogram V � w2�	�, roughness-length (root-mean-
square roughness), power-spectrum, and wavelets meth-
ods, and the rescaled-range (R=S) analysis. The global
roughness exponents were determined from the scaling
behavior W / L� [5].

Figures 2(c) and 2(d) show the fractal graphs obtained
by the rescaled roughness (c) and variogram (d) methods
096101-2
for rupture lines and wetting fronts, respectively. Notice
that the spatial extent over which scaling is observed
is of the order of magnitude of the scaling range of the
correlations in the fiber network; see Table I. Statistical
distributions of the local roughness exponents �crack and
�wet are shown in Figs. 3(a) and 3(b), respectively.
Furthermore, we find that wetting fronts in toilet paper
and cracks in filtro papers display an anomalous rough-
ness with �crack > �crack [see Fig. 3(c) and Table I], while
the wetting fronts in secante and filtro papers, as well as
the cracks in secante paper, are statistically self-affine
(� � �).

As follows from Fig. 3(d), there is a strong correlation
between the crack local roughness exponent and the
fractal dimension of fiber network, which can be fitted
very nicely by the simple relation

�crack � 1� � � Dfiber � �d� 1�: (3)

Figure 1(d) shows the graph of paper porosity versus the
local roughness of the wetting front. Taking into account
the Katz-Thomson relation for fractal porosity [20],
namely,

P=100 � KDpore�d; (4)

where K � k�Rmax=Rmin�, k is a geometrical factor, and
Rmin and Rmax are the minimum and maximum character-
istic pore sizes. From the fitted equation in Fig. 1(d) it
follows that K � exp�1:38� � 3:97 while the relation be-
tween �wet and the fractal dimension of the pore space can
be presented in the form
096101-2



FIG. 2. Graphs of (a) rupture lines and (b) wetting fronts in
five papers (1 pixel � 0:02 mm) and the corresponding fractal
graphs, obtained by (c) the R=S (for rupture lines) and
(d) variogram (for wetting fronts) methods (the plots are
shifted along the abscissa for clarity). R=S � hR�	�=S�	�i,
where R�	� and S�	� are the range and the standard deviation
of h�x� within window 	 pixels, respectively; V � w2�	�.

FIG. 1. (a) A log-log plot of the mass density correlation
function Cn � C�R�=C�R0� versus r � R=R0 (R0 � 1 pixel �
0:02 mm, curves are shifted along axis Cn for clarity) and
(b) statistical distributions of � for five papers numbered in
Table I (bars: experimental data; solid lines: fitting by normal
distribution with the help of @RISK 4.0 software [16]; the data
bars for some papers are omitted for clarity). Graphs of
(c) � versus Dfiber (circles: experimental data; solid line: fitting
by equation ln��� � 2:5Dfiber � 0:185, with R2 � 0:9976 and
(d) P versus �wet (dotted line: fitting by equation ln�P=100� �
1:38��wet � 1�, with R2 � 0:9827).
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Dpore � �d� 1� � �wet: (5)

Now, one can easily check that the obvious relation
��=�0� � �P=100� � �12:18�Dfiber�d � �3:97�Dpore�d � 1 is
valid for all papers (see Table I).

It should be pointed out that the phenomenological
relations (3) and (5) differ from the corresponding theo-
retical relationships obtained in Ref. [9]. To get a better
insight into the nature of relations (3) and (5), we note
that the saturated wetting fronts and cracks can be mod-
eled as elastic objects pinned by quenched impurities [21].
So the roughness of a pinned interface is determined by
competition between an elastic restoring force and a pin-
ning force as

h�x; y� �
ZZ

G�x� xf; y� yf�f�xf; yf�dxfdyf; (6)

where f is the pinning force distribution, and G is the
Green function for the equation of equilibrium of a
pinned interface (see [22,23]). In fractal media the
quenched pinning centers are expected to be correlated
owing to the density-density correlations. Therefore, the
pinning force two-point correlation function behaves as
 �r� / r��, where r � ��x� xf�2 � �y� yf�2
1=2 and 0<
� � d�D< 1. This behavior is a characteristic of self-
affine fractals [1]. Accordingly, we assume that the pin-
ning force displays a self-affine scaling behavior
FIG. 3. Statistical distributions of (a) �crack and (b) �wet for
five kinds of paper (see Table I); bars: experimental data; solid
lines: fitting by normal distribution with the help of @RISK 4.0

software [16]. (c) Log-log plots of the normalized sample
averaged global rupture line width v � W�L�=W�L � 5 mm�
versus the normalized paper sheet width ' � L=�5 mm� for
filtro paper with (1) open, (2) medium, and (3) closed porosity;
and (d) the graphs of (1) �crack and (2) � versus Dfiber � �d� 1�
for five kinds of paper (solid line: fitting by equation �crack �
Dfiber � �d� 1�; dotted line: fitting by equation � �
2:23�crack � 0:4262).
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f�'x; 'y� � '��f�x; y�. Such elastic interactions have
been shown to significantly increase any long-range dis-
order correlations in the system [24]. A self-affine inter-
face is asymptotically flat (W=L / L��1 ! 0 as L! 1).
So, it is a good approximation to use the flat-surface
Green function G / r�1 [22]. To within the approxima-
tions we have made, Eq. (6) immediately gives the scaling
relations r! 'r, G! '�1G, f ! '��f, and h!
'1��h. Thus, once again, we conclude that the local
roughness exponent (�) of a pinned interface is related
to the fractal dimension (D) of the media by � � 1� � �
D� �d� 1�.

Accordingly, the fractal (box counting) dimension of a
pinned self-affine interface (Dint � d� � [20]) is related
to the fractal dimension (D) of correlated quenched noise
by Dint � �2d� 1� �D. On the other hand, in the case of
random media with short-range correlations, one may
expect that the scaling properties of a moving interface
are determined by a percolationlike mechanism (see [1]),
which determines the universal value of � (see also [24]).
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