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A dynamical analysis is presented that self-consistently takes into account the motion of the critical
layer, in which the magnetic field reconnects, to describe how the m � n � 1 resistive internal kink
mode develops in the nonlinear regime. The amplitude threshold marking the onset of strong non-
linearities due to a balance between convective and mode coupling terms is identified. We predict
quantitatively the early nonlinear growth rate of the m � n � 1 mode below this threshold.
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in the geometry of the current sheet [10]. However,
some fundamental questions remain unanswered or un-

them � 1 mode. For this, we assume that only them � 1
mode is destabilized initially with an amplitude A0,
The large scale dynamics and confinement properties
of tokamak plasmas depend intimately on the behavior of
m � n � 1 magnetohydrodynamic (MHD) internal kink
modes. This has motivated an intense, long-lasting, ex-
perimental and theoretical research, notably devoted to
study their implication in magnetic reconnection or as
triggers of the sawtooth oscillations and crashes. These
phenomena typically proceed beyond the linear regime,
that is now rather well understood but assumes very small
amplitudes of the modes. To offer a quantitative, predic-
tive description of their nonlinear manifestations remains
a difficult objective of both academic interest and very
practical importance. This is especially relevant for the
design of fusion burn experiments in which the fulfill-
ment of linear stability constraints is challenged by the
search for ignition. Such devices are thus expected to
operate at best close to marginal stability for the m �
n � 1 ideal mode so that nonlinear effects come into play
for fairly small values of the mode amplitude [1,2].

In this Letter, we focus on the m � n � 1 resistive
mode [3] in which a finite resistivity � destabilizes the
otherwise marginally stable ideal MHD internal kink
mode. Since Kadomtsev’s scenario [4] predicting the
complete reconnection of the helical flux within the
q � 1 surface on a time scale of order ��1=2, that later
appeared too large to account for observations, the non-
linear behavior of the m � n � 1 mode has become a
somewhat controversial issue. Some numerical simula-
tions suggested that the mode still grows exponentially
into the nonlinear regime [5] which was supported by
a theoretical model [6]. Later some analytic studies
[7], supported by numerical simulations [8], rather pre-
dicted a transition to an algebraic growth early in the
nonlinear stage. This result was challenged by Aydemir’s
recent simulations using a dynamical mesh [9]. These
did show the linear exponential stage evolving towards
an algebraic stage, yet this was brutally interrupted by a
second nonlinear exponential growth. A modified Sweet-
Parker model was able to fit continuously both stages
of evolution [9] and the transition related to a change
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clear. Among them, how to relate the transition threshold
with�, or what is the role of the q profile? The aim of this
Letter is to describe analytically how the m � n � 1
resistive mode develops in the nonlinear regime, by fo-
cusing on the equations controlling plasma dynamics.

We consider the low-� reduced MHD equations
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assuming helical symmetry [11]. Only a single angu-
lar variable is then involved in the problem, namely,
the helical angle � � ’� �, with ’ the toroidal and
� the poloidal angles. U � r2

?
 is the vorticity and
J � r2

? the helical current density, with r2
? �

r�1@rr@r � r�2@2�. Time is normalized by the poloidal
Alfvén time (t! t=�Hp), the radial variable by the minor
radius (r! r=a) and � is the dimensionless resistivity,
inverse of the magnetic Reynolds number S (� � S�1 �
�Hp=�R) with the poloidal Alfvén time �Hp �
��0�0�

1=2R=B0’ and resistive time �R � �0a2=�0. The
Poisson brackets are defined by �
;U� � �’̂’ � �r?

r?U� � r�1�@r
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�. 
 and  are the
plasma velocity and helical magnetic field potentials
expressed in cylindrical coordinates, so that the velocity
is v � ’̂’  r?
 and the magnetic field is B � B0’’̂’ �
’̂’  r?� � r2=2�.

We consider MHD equilibria given by 
0 � 0 and by a
helical magnetic flux  0�r�, related to the safety profile
q�r� through dr 0 � r�1� 1=q�r��, such that q � 1 for
an internal radius r � rs0. Thus dr 0�rs0� � 0. This
means that the low-frequency ideal linear equations as-
sociated to (1) and (2) are singular at r � rs0, with a
formally diverging current density. This marks the pres-
ence of a critical layer in which the dynamics differs
considerably from the outer one and where resistivity
enters to cure the singularity.

We wish to analyze perturbatively the time evolution of
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neglect all ideal MHD transients, and restrict to the
linear resistive time scale � � �1=3t. We do not consider
the somehow ill-posed, singular limit �! 0, but instead
realize that two small parameters are indeed competing in
this problem, namely, the small given resistivity� and the
time-dependent amplitude A��� of the linear m � 1
mode. This introduces some subtleties in the amplitude
expansion. The order one solution is given by linear
theory using an asymptotic analysis [3] to match inner
and outer solutions. Excitation of the m � 1 mode leads
to a self-consistent correction to the location of the
critical layer. One estimates the amplitude threshold,
scaling with �, at which the next order solution is re-
quired and the procedure iterated. Separability in time
and space propagates at each order resulting in an ampli-
tude expansion in A. As in any perturbative approach,
the solution is formally known when the order one solu-
tion is. This is given by the linear theory reviewed now.

Let f�m�n be the projection on exp�im�� of any function
f at order n. In the inner resistive layer, Eqs. (1) and (2)
read �
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where we define !0 �  00
0 �rs0�=rs0. In these equations, x is

the stretched coordinate x � �r� rs0�=w and w � �1=3

the magnitude of the width of the critical layer giving the
maximal resistive ordering [3] in (3) and (4). In the layer,
radial derivatives are large, since @r � w�1@x and (3) and
(4) are the dominant equations for w� 1. There is one
unstable solution, the m � 1 resistive mode, with growth
rate #̂#L � !2=3

0 � q0�rs0�2=3. Real space potentials read

 1�x; �; �� � A0 exp�#̂#L��gL
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where gL is the function
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s
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erfc�s� �

1

2
����
&

p exp��s2�: (7)

This solution was chosen to satisfy the matching asymp-
totic conditions g0L��1� � 1 and g0L��1� � 0. This
analysis has to be complemented with the derivation of
the outer solution. On the resistive time scale, this
amounts to solving, at leading (zero) order in w, a linear
system of ideal MHD equilibria, singular at r � rs0 [11].
This illustrates the passive character of the outer domain.
We only retain here that, given the asymptotic and bound-
ary conditions imposing  0�1�

1 �r�s0� � 0 and  �1�
1 �1� � 0,
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the outer linear m � 1 solution  �1�
1 �r� is identically van-

ishing for rs0 < r � 1.
Linear theory breaks down when, in the resistive criti-

cal layer, nonlinear terms due to mode couplings, e.g., in
Eq. (1) �
1; U1� � w�3A2, balance linear ones, i.e.,
!0xw@�J1 � A=w in Eq. (3). Thus, A��� � O��2=3� marks
the onset of second order terms. Before pursuing the
analysis on the critical layer, we need to track it and
self-consistently estimate its location. The total mag-
netic flux in the critical layer is now  �x; �; �� �
�2=3 00

0 �rs0�x
2=2�  1�x; �; ��. To follow continuously

the linear stage, we define the ‘‘backbone’’ rs��; ��
of the critical layer as the ‘‘neutral’’ field line with
@r �rs� � 0. Writing rs1��; �� � rs��; �� � rs0 �
wx1��; �� with @x �x1� � 0, this gives

rs1��; �� ’ �
A���

�1=3

!1=30 g0L�0����
2

p
 00
0 �rs0�

cos�; (8)

which relates to the shift of the core plasma inside
the q � 1 surface due to the kink instability. Then the
X-point shift rs1�� � &; �� goes like A���=�1=3, consis-
tently with Aydemir’s numerical results [9]. Thus, the
critical radius starts to leave the linear critical layer
band, centered on rs0, when rs1��; �� becomes of the
order �1=3 for some �; that is, when A��� * �2=3. This
is again the threshold marking the end of the linear
stage. We need now to define a generalized stretched
coordinate in the critical layer as x � �r� rs��; ���=w.
The replacements @� ! @� � w�1�@rs=@��@x and @� !
@� � w�1�@rs=@��@x are then required [12].

The second order critical layer equations involve an
inhomogeneous part composed of quadratic terms in the
order one solutions (5), (6), and (8). This acts to force the
growth of the m � 0 and m � 2 perturbations but brings
no contribution to the m � 1 dynamics. Therefore the
m � 1 equations (3) and (4) are unchanged, except that,
due to the motion of the critical layer (8), one needs to
replace !0 in (3) and (4) by the time-dependent average

!�0���� �
1

2&

Z 2&

0

@2r �rs��; ���
rs��; ��

d�: (9)

This introduces a generalized linear system of equations.
Neglecting the initially zero amplitudes of them � 0 and
m � 2 perturbations in front of A���, the second order
correction to the location of the critical layer is given by
rs2��; �� ’ ��2 00

0 �rs0��
�1 000

0 �rs0�rs1��; ��
2. The validity

threshold of the second order solution is reached when the
instantaneous critical line moves out of the critical layer
of width w centered on rs0 � rs1��; �� for some �. This
corresponds to rs2��; �� � w, that is to rs1��; ��2 � �1=3,
which gives A��� � O��1=2�. This threshold in the am-
plitude of the linearm � 1 mode marks the onset of third
order terms, which will contribute again to the m � 1
dynamics. Its brutal manifestation is visible on Aydemir’s
plots [9]. They clearly report a transition in the m � 1
095003-2
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kinetic energy when this becomes of order �=2 [13],
namely, around 5 10�8 for � � 10�7 and around
5 10�6 for � � 10�5.

At third order, cubic terms in the order one solutions or
quadratic terms coupling the m � 0 and m � 2 second
order terms to the m � 1 first order ones appear in the
inhomogeneous part of the critical layer equations and
modify the m � 1 dynamics. These terms involve some
radial derivatives, e.g., @r


�1�
1 , that are O�w�1� large only

within the linear layer. Locality enters here the analysis
since the dominant contribution of these mode coupling
terms comes from the localized zone in �r; �� where the
instantaneous and linear critical layers overlap. This is
depicted by the grey shaded region in Fig. 1. The novelty
is that, in this region, mode couplings are now able to
balance convective derivatives, both being dominant with
respect to linear terms. More explicitly, while, e.g., in
Eq. (1) written in the region where the instantaneous and
linear critical layers overlap, the magnitude of linear
terms is @�@2r
�1� � w�2A���, convective terms are of
the order of @�r

�0�
s2 @

3
r


�1�
1 � w�5A3. Thus, linear terms

become negligible for A��� � �1=2, which marks the
onset of the fully nonlinear regime for the m � 1
mode. Moreover, convective terms, e.g., @�r

�0�
s2 @

3
r


�1�
1 �

w�5A2@�A, equilibrate mode coupling terms, such as
�r�1

s0 @r

��1�
1 @�r

�1�
s1 @rU

�1�
1 � w�5A3 coming from �
;U�

in the shear-Alfvén law (1). The nonlinear growth rate
derives from this balance. As !�0���� is no longer involved
in those convective and mode coupling terms, there is no
extra time dependence in the dominant equations, so that
the nonlinear growth rate is just equal, by continuity, to
the growth rate of the m � 1 mode when A��� becomes
of order �1=2. Its value depends notably on the equilib-
rium q profile as we shall see below. After some spatial
averaging, a rough summary of the time evolution of the
m � 1 mode amplitude may be then finally written as
− π π
α

x

0

linear
critical
layer

FIG. 1. Picture in the �x; �� space of the initial linear critical
layer and of a nonlinear one centered on the instantaneous
transverse neutral field line (in bold). The grey region repre-
sents their overlapping domain within which the gradients of
linear potentials are O�w�1� large.
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dA
dt

� #�t�A�
c
�
A2

�
dA
dt

� #�tNL�A
�
� 0; (10)

where the initial value of the growth rate #�0� is #L and
where the early time dependence of # comes from the
motion of the critical layer and is computed quantitatively
below. In Eq. (10), c is a constant of order one, and tNL
denotes the (magnitude of the) time at which A becomes
of order �1=2. Equation (10) describes effectively the
transition between two (almost) exponential stages.
Because 
�1�

3 and  �1�
3 are zero at the onset of the third

order regime, Eq. (10) remains valid during some stage
even if the structure and scaling of the critical layer
should substantially change as the generalized linear
stage is left.

For the convective exponential stage to be fully valid,
the overlap between the linear and instantaneous critical
layers should be large enough. One expects then a quali-
tatively different late behavior of the m � 1 dynamics if
the X-point region is far away from the linear layer when
A��� � O��1=2�, that is, due to (8), if ��1=6 �� 1. This
regime is extremely challenging to reach numerically
but may be satisfied in tokamak plasmas.

We finally examine the early nonlinear effects on
the growth rate of the m � 1 mode due to the motion
of the critical layer. This amounts to solving the system
of differential equations (3) and (4) for !0 replaced
with !�0����, defined in (9). It can be checked that, as
long as the order of magnitude of A��� is lower than �1=2,
!�0���� may be approximated by �2&��1

R
2&
0 rs��; ��

�1 
 00
0 �rs��; ���d� at leading order. This expression will be

retained in the numerical computations. The time-
dependent growth rate is defined as #̂#��� � d�A=A. In
this generalized linear system, there is one condition
shared with the linear derivation: For a solution in sepa-
rate variables � and x, it is that #̂#���=!��� be constant.
This constant is then fixed by continuity with the linear
solution at time zero giving

#̂#���

!�0����
�
#̂#L
!0

� !�1=3
0 : (11)

Here, one implicitly assumes that the spatial part of the
linear eigenfunctions remains valid [14]. The instanta-
neous critical radius is rs��; �� � rs0 � �1=3xs��; ��,
where xs��; �� is given by the approximate expression

xs��; �� � H�1

�
�
A���!1=30 cos�

�2=3
���
2

p
 00
0 �rs0�

�
: (12)

H�1 denotes the inverse of the monotonously growing
function defined by H�x� � x=g0L�!

1=3
0 x=

���
2

p
�. Because of

the asymmetric nature of the m � 1 resistive eigenfunc-
tions (7), H�1�x� is very asymmetric, grossly equal to x
below x � 0 and exponentially small above. This confers
a much more important weight on negative arguments of
H�1 than on positive ones in the averaging (9). The
095003-3
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FIG. 2. Analytic nonlinear growth rate corresponding to the
initial conditions used in Ref. [9] and resistivity � � 10�7,
neglecting third order convective effects coming into play
when A�t� becomes of order �1=2. This occurs for t ’ 1000.
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FIG. 3. Analytic nonlinear growth rate for the same initial
values as in Fig. 2 but with a modified equilibrium safety
profile q�r�. Its behavior around rs0 is plotted in the inset.

P H Y S I C A L R E V I E W L E T T E R S week ending
7 MARCH 2003VOLUME 90, NUMBER 9
magnetic island has thus a higher effective contribution
to the early nonlinear correction of the growth rate than
the region of X-point. A rough estimate of the angular
average of xs is given by x�0�s ��� ’ ��2&��1A���!1=3

0 =
��2=3

���
2

p
 00
0 �rs0��

R&=2
�&=2 d� cos�. Equation (11) defines a

first order differential equation in A��� that admits then
the approximate form #̂#��� ’ #̂#L � dr�r

�1 00
0 �r���rs0� 

�1=3x�0�s ���. Going back to time t and to #L � �1=3#̂#L,
this gives

dA
dt

’ #LA�t� � C0A�t�
2; (13)

where C0 � �q00 � rs0q000 � 2rs0q020 �=�&
���
2

p
r2s0q

02=3
0 � and

the index 0 denotes an evaluation at rs0. Equation (13)
shows the first nonlinear contribution to the m � 1 evo-
lution. The early behavior of them � 1 growth rate is thus
#�t� ’ #L � C0A0 exp�#Lt�. In order to check numeri-
cally these analytic predictions for the generalized linear
stage, which bring the first nonlinear contributions to the
growth rate, we used Aydemir’s initial conditions [9]. The
safety profile is q�r� � qmf1� r4��qa=qm�2 � 1�g1=2 with
qm � 0:9, qa � 3, giving C0 > 0. The differential
equation (11) was integrated numerically for A0 �

���
2

p


10�5:5 corresponding to an initial kinetic energy in the
m � 1 mode of the order 10�11. The nonlinear growth
rate #�t� � �1=3#̂#��� is plotted in Fig. 2 for S � 107. This
curve appears to be in fine agreement with Fig. 1 of
Ref. [9] for times t roughly below 1000 Alfvèn times.

Figure 3 illustrates the influence of the q profile around
rs0 on the time evolution of # due to (9). A sudden bump
in the nonlinear growth could thus even be observed,
before the onset of convective effects, for the special
shape of q chosen in Fig. 3. Moreover, some q profile
may induce a saturation of A below the convective
threshold and lead to partial reconnection. Most impor-
tantly, the approach described here may be transposed to
model the early nonlinear behavior of a variety of inter-
nal kinks such as two-fluid [15–17] and/or collisionless
[18] models.
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