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Control of Friction at the Nanoscale
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We propose a new algorithm to control frictional dynamics of a small array of particles towards
preassigned values of the average sliding velocity. The control is based on the concepts of non-
Lipschitzian dynamics and terminal attractor. Extensive numerical simulations illustrate the robustness,
efficiency, and convenience of the algorithm.
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neural networks [10,11] but has not been applied to second
order systems. This scheme presents several advantages.

models [13,18,19] through 2D and 3D models [14,20,21]
to a full set of molecular dynamics simulations [22,23].
Despite the great progress made during the past half
century, many issues in fundamental tribology (such as
the origin of friction and the failure of lubrication) have
remained unsolved. Moreover, the current reliable knowl-
edge related to friction and lubrication is mainly appli-
cable to macroscopic systems and machinery and, most
likely, will be only of limited use for microsystems and
nanosystems [1]. Better understanding of the intimate
mechanisms of friction, lubrication, and other interfacial
phenomena at the atomic and molecular scales is ex-
pected to provide the required tools to control friction,
reduce unnecessary wear, and predict mechanical faults
and failure of lubrication in microelectromechanical sys-
tems and nanodevices [2].

The ability to control and manipulate friction during
sliding is extremely important for a large variety of
technological applications. Friction can be manipulated
by applying small perturbations to accessible elements
and parameters of the sliding system [3–9]. Recently,
Heuberger et al. [3] (experimental) and Gao et al. [4]
(molecular dynamics simulation) showed that friction in
thin-film boundary lubricated junctions can be reduced
by coupling the small amplitude (of the order of 1 �A)
directional mechanical oscillations of the confining
boundaries to the molecular degree of freedom of the
sheared interfacial lubricating fluid. Methods to control
friction in systems under shear which enable one to
eliminate chaotic stick-slip motion were proposed by
Rozman et al. [5]. Significant changes in frictional re-
sponses were observed in the two-plate model [6] by
modulating the normal response to lateral motion [7].
In addition, the surface roughness and the thermal noise
are expected to play a significant role in deciding control
strategies at the microscale and the nanoscale [8,9].

In this Letter, we address some fundamental issues
related to targeting and control of friction in nanoscale
driven nonlinear particle arrays, by proposing a global
feedback control scheme, based on the properties of ter-
minal attractors [10,11]. This type of control has been
successfully implemented in first order systems such as
0031-9007=03=90(9)=094301(4)$20.00 
First, the presence of a terminal attractor in the control
term provides robustness and ensures a very fast approach
to target. Second, the global control turns out to be more
efficient and easier to implement.

As shown in the following, terminal dynamics has
several general consequential properties, namely, (i) large
dissipative forces in the vicinity of the targeted points,
(ii) finite convergence times to targets, and (iii) smooth
transitions between various regimes, in particular, static
and kinetic friction. In some sense, one may think of the
non-Lipschitzian terminal attractor as a very strong con-
centrator of energy towards its basin of attraction.
Indeed, in that region, the control term dominates the
dynamics resulting in finite (and usually rather short)
convergence times [11]. We illustrate the proposed con-
trol strategy on a phenomenological model of friction
[6,12–14]. Despite their relative simplicity, phenomeno-
logical models of friction at the atomic level show a fair
agreement with many experimental results using either
surface force apparatus [6,15,16] or quartz crystal micro-
balance [8,17].

The basic equations for the driven dynamics of a one
dimensional particle array of N identical particles mov-
ing on a surface are given by a set of coupled nonlinear
equations of the form [13]

m �xxn � � _xxn � �@U=@xn � @V=@xn � fn � ��t�;

n � 1; . . . ; N; (1)

where xn is the coordinate of the nth particle, m is its
mass, � is the linear friction coefficient representing
the single particle energy exchange with the substrate,
fn is the applied external force, and ��t� is Gaussian
noise. The particles in the array are subjected to a peri-
odic potential, U�xn � a� � U�xn�, and interact with
each other via a pairwise potential V�xn � xm�, n;m �
1; 2; . . . ; N. System (1) provides a general framework
of modeling friction although the amount of details and
complexity varies in different studies from simplified 1D
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To better present our ideas, we make the following
simplifications, namely, (i) the substrate potential is as-
sumed to have a simple periodic form, (ii) there is a zero
misfit length between the array and the substrate, (iii) the
same force f is applied to each particle, and (iv) the
interparticle coupling is linear. The coupling with
the substrate is, however, strongly nonlinear. For this
case, using the dimensionless phase variables �n �
2�xn=a, the equation of motion reduces to the dy-
namic Frenkel-Kontorova model [15]

���n � � _��n � sin��n� � f � ���n�1 � 2�n ��n�1�:

(2)

Extensive numerical simulations have been performed
on arrays of different sizes (3<N < 256) in order to
verify size effects are not critical for the proposed con-
trol. The numerical and graphical results are presented
for a typical nanoarray of N � 15 particles. Without con-
trol, Eq. (2) exhibits four different regimes: (i) rest (no
motion), (ii) periodic sliding, (iii) periodic stick-slip, and
(iv) chaotic stick-slip. Different motion types are ob-
tained by changing only the initial conditions of the
particle’s positions and velocities, but not the system’s
parameters. The average velocity of the center of mass
for the ‘‘natural’’ (i.e., uncontrolled) motion, may take
only a limited range of values, namely, (i) v � 0 for
rest (no sliding), (ii) v � f=� for periodic sliding mo-
tion, and (iii) v � nv0, where n is an integer, v0 �
2�
nN�

�����������������������������������������
��cos�1f

� ��� �c�
1=2

q
, for periodic stick-slip motion

[13]. In the range of parameters under consideration, we
observed only one single value of the average velocity of
the center of mass for chaotic stick-slip.

When applying the control to the nanoarray, our ob-
jectives are to (i) reach any targeted value of the average
sliding velocity using only small values of the control and
(ii) significantly reduce the transient time needed to reach
the desired behavior. To that effect, we propose a global
feedback control algorithm that uses the concept of
‘‘terminal attractor’’ [10,11] which is usually associated
to non-Lipschitzian dynamics. The equations of motion
in the presence of the control term C�t� read

���n � � _��n � sin ��n� � f � ���n�1 � 2�n ��n�1�

� C�t�; (3)

where

C�t� � ��vtarget � vcm�
� (4)

is the non-Lipschitzian control term based on the concept
of terminal attractor [10,11]. In Eq. (4), vcm �
�1=N�

P
N
n�1

_��n is the average (center of mass) velocity,
and vtarget is the targeted velocity for the center of mass,
� � 1=�2n� 1�, and n � 1; 2; 3 . . . . In this Letter we
present results for � � 1=7, but the algorithm is perform-
ing equally well for other values. We note that the control
requires only the knowledge of the average velocity of
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the array, which is an experimentally available quantity
and is applied identically and concomitantly to all the
particles in the array upon which it acts as a uniform
force proportional to �vtarget � vcm�

�.
We note that most dynamical systems satisfy the

Lipschitz condition, namely, the derivatives of the
right-hand side of the dynamical equations with respect
to the state variables are bounded. The terminal attractor
dynamics that we are utilizing violates it by design. As a
result, trajectories reach the terminal attractor in finite
time [10]. To illustrate this phenomenon, consider a
simple example of a terminal attractor, namely, the equa-
tion _�� � ��1=7. At the equilibrium point, � � 0, the
Lipschitz condition is violated, since @ _��=@� �
��1=7���6=7 tends to minus infinity as � tends to zero.
Thus the equilibrium point � � 0 is an attractor with
‘‘infinite’’ local stability.

This is precisely the effect realized with the control
term C�t�. Indeed

dC
dvcm

� ��1=7���vtarget � vcm�
�6=7; (5)

i.e., dC=dvcm ! �1 as vcm ! vtarget.
The ‘‘infinite attraction power’’ of the ‘‘terminal’’

(non-Lipschitzian) attractor endows the proposed algo-
rithm with excellent efficiency and robustness, as illus-
trated in Fig. 1 for four values of the target velocity,
namely, vtarget � 0, 0.5, 1, and 3. Red lines indicate the
time series of the control [Eq. (4)], while the blue lines
show the time series of the velocity of the center of mass.
In all cases, we reached the (arbitrarily chosen) target
values for rather small values of the control and very short
transient times.

To assess the performance of the proposed algorithm
for more ‘‘realistic’’ interaction potentials, we replaced
the linear interaction in Eq. (3) by the Morse interaction:

Fj �
�
�
fexp	����j�1 ��j�
 � exp	�2���j�1 ��j�
g

�
�
�
fexp	����j ��j�1�


� exp	�2���j ��j�1�
g:

While our simulations indicate that the control algo-
rithm remains robust and efficient, more studies are
needed to fully generalize this conclusion. As already
mentioned, we also performed preliminary simulations
for arrays as large as N � 256. The outcome is compa-
rable to the results reported here, which suggests that
the proposed control is efficient in systems larger than
atomic size.

We performed extensive testing of the proposed algo-
rithm [Eqs. (3) and (4)] by choosing numerous values of
the target velocity. Figure 2 illustrates the performance of
the algorithm for different values of the target velocities
as a function of the parameter � [see Eq. (3)]. We have
chosen a random set of initial conditions for each value of
094301-2



FIG. 1 (color). Performance of the control algorithm. We picked four values of the average velocities: v � 0, 0.5, 1.0, and 3.0 for
N � 15 particle array. Control was initiated at t � 2000. The blue lines show the time series of the center of mass velocities while
red lines show the control. In all cases, the desired behavior was achieved. The parameters are f � 0:3, � � 0:1, � � 0:26, and
� � 1=7. All the units are dimensionless and initial conditions are chosen randomly.
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�. Indeed, for some values of vcm the convergence to the
target value is straightforward (see upper and middle
curves). For other values of vtarget, the dependence of
the center of mass velocity, vcm on � is irregular. These
are the cases where the targeted values of the average
velocities are in close proximity with those values with-
out control (i.e., the desired behavior is in the vicinity of
self-attractors of the uncontrolled array). Thus we modi-
fied the control as follows:

C�t� � ��vtarget � vcm�
� � ��vav � vcm�

�

� sgn	�vav � vcm��vcm � vtarget�


�H	r� jvtarget � vavj
: (6)

The second term in Eq. (6) represents a repelling from
a possible natural attractor of system (2) that would de-
flect the trajectory towards the target velocity and away
from natural attractors. In general, the natural attractors
are not known analytically and/or a priori. Their presence
is indicated only by the behavior of the system and
accounted for by vav, which is the ‘‘running’’ (time de-
pendent) average velocity and represents the moving run-
094301-3
time average of vcm. H�:� denotes the Heaviside function,
defined as H�z� � 1 for z > 0, and H�z� � 0 for z < 0.
The role of this function is to activate the terminal
repeller only within a neighborhood of radius r from
the natural attractor. The coefficients � and � are positive
numbers that represent the weights of the non-
Lipschitzian attractor and repeller, respectively.

We applied the algorithm [Eq. (4)] to target the value of
v � 0:1 (see the bottom curve in Fig. 2). Here, we are
close to the static solution (stable fixed point) v � 0.
Therefore, for some values of the control amplitude �,
the outcome average velocity is v � 0 (instead of the
desired velocity v � 0:1). The triangles in Fig. 2 show
the center of mass velocity as a function of � but using
control defined in Eq. (6). This control will repel away
from the fixed point v � 0; therefore, we observe much
better performance of the proposed control.

We discuss briefly the applicability of the proposed
algorithm [based on terminal (non-Lipschitzian) dynam-
ics] for control of friction. While in this Letter we do not
suggest a specific implementation of the proposed con-
trol, we do provide a solid demonstration of a proof of
principle that is relevant for both quartz microbalance
094301-3



FIG. 2 (color). The center of mass velocity as a function of
the maximum control amplitude �. We have chosen three
values of the target velocity, namely, 0.1 (blue), 1.0 (red),
and 3.0 (green). The triangles show the velocity of center of
mass for control defined by Eq. (6). All the parameters are the
same as in Fig. 1 and initial conditions were chosen randomly.
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and surface force-type experiments. In the former, the
control term is a force, while in the latter it is a velocity.
For other applications, the physical realization of the
control term may be a different physical quantity. The
speed requirement may limit the current applicability
of the proposed algorithm only to fast controls such
as optical, or usage of micro/nano cantilevers [24].
However, implementation of the proposed algorithm at
slower time scales is possible. Indeed, numerical simu-
lations show that one can apply the control at much
slower rates, while still maintaining the average value
of the velocity close to the target. Not surprisingly, the
‘‘price’’ of such relaxed requirements is a longer time
needed to reach the target and larger fluctuations from the
averaged value.

In summary, we proposed a new type of algorithm to
control friction of the sliding nanoarrays. This control is
based on the concept of terminal attractor and is global in
that (i) it requires only the knowledge of the velocity of
the center of mass and (ii) is applied globally to the whole
array. We demonstrated the efficiency and robustness of
the control by reaching a broad spectrum of target veloci-
ties—both close to or far from natural attractors—in
very short transient times.
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