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We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the
pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-
shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation
turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in
pionic 205Pb and 207Pb are well reproduced without need for a notorious ‘‘missing repulsion’’ in the
pion-nuclear s-wave optical potential. The connection with the in-medium change of the pion decay
constant is clarified.
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Our framework will be in-medium chiral perturbation
theory at two-loop order [16]. But before going into

the driving Weinberg-Tomozawa term in T��!�, but with
the pion decay constant renormalized [f� ! f�����] to
Recent accurate data on 1s and 2p states of negatively
charged pions bound to Pb nuclei [1] have set new stand-
ards and constraints for the detailed analysis of s-wave
pion-nucleus interactions. This subject has a long history
[2–8], culminating in various attempts to understand
the notorious missing repulsion: The standard ansatz for
the s-wave pion-nucleus optical potential in terms of the
empirical threshold �N amplitudes times the proton and
neutron densities �p;n, supplemented by sizable double-
scattering corrections, still misses the empirically re-
quired repulsive interaction by a large amount. On purely
phenomenological grounds, this problem can be fixed by
simply introducing a sufficiently large negative real part,
ReB0, in the �2 term of the pion-nuclear optical potential
[6]. The arbitrariness of this procedure is of course un-
satisfactory, also in view of the fact that ReB0 cannot be
calculated microscopically with sufficient accuracy, and
that the high precision measurements of the real part of
the pion deuteron scattering length [9] suggests a very
small net ReB0 by analogy.

In the meantime, this issue has been revived in a
variety of ways. An interpretation of the missing repul-
sion in terms of a possible in-medium change of the pion
decay constant, as suggested in Ref. [10], appears to be
remarkably successful [11,12] but has been debated
[13,14]. Clearly, this concept needs further justification.
In the present paper, we show that a possible key to the
understanding of low-energy pion-nucleus s-wave inter-
actions lies in its distinct energy dependence imposed by
chiral symmetry, in combination with the ‘‘accidental’’
approximate vanishing of the isospin-even threshold �N
amplitude [15]. Another important feature, generally
ignored in previous analyses, is the systematic incorpo-
ration of gauge invariance at all places where the pion
energy ! appears explicitly, when solving the Klein-
Gordon equation in the presence of electromagnetic
interactions.
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technical details, the following simplified treatment
may be useful to illustrate driving mechanisms.

Consider a zero-momentum �� interacting with nu-
clear matter at low proton and neutron densities, �p and
�n. The in-medium pion polarization operator to leading
order in the nucleon densities is expressed in terms of the
isospin-even and isospin-odd off-shell �N amplitudes
T��!� as 
�!� � �T��!���� T��!��, with the iso-
scalar and isovector nucleon densities, � � �p � �n and
�� � �p � �n. The spontaneous and explicit breaking of
chiral symmetry implies the following leading terms of
those amplitudes [17]:

T��!� �
�N � !2

f2�
; T��!� �

!

2f2�
; (1)

where f� � 92:4 MeV is the pion decay constant, m� �
139:57 MeV is the (charged) pion mass, and �N ’ 45�
8 MeV [18] is the pion-nucleon sigma term. The empirical
observation that T��m�� � ��0:04� 0:09� fm ’ 0 [19]
sets the constraint  ’ �N=m

2
�.

Next, consider the pionic in-medium dispersion
equation at zero momentum, !2 �m2

� �
�!� � 0.
Introduce an (energy independent) equivalent optical po-
tential U by !2 � m2

� � 2m�U with U	 m�, and ex-
pand around ! � m�. This gives

U ’

�m��
2m�

�
1�


0�m��
2m�

�
�� � � ’


�m��=�2m��

�1� @

@!2�j!�m�

; (2)

where the last approximate step introduces the wave func-
tion renormalization factor f1� ��@
�=�@!2��g�1

!�m� .
The difference between the second and the last step in
(2) is of subleading order. Inserting (1) and assuming
��	 �, one finds

U ’ �
��

4f2�

�
1�

�N�

m2
�f2�

�
�1
’ �

��

4f�2�
; (3)

which is the expression proposed in Ref. [10]. It involves
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FIG. 1. Binding energies and widths of deeply bound pionic
states in the isotopes 207Pb (left figure) and 205Pb (right figure).
Diamonds show the experimental data from [1]. Uncertainties
in the extraction of the 1s level for 207Pb are indicated by
different choices of a control parameter R as specified in [1].
The results for the polarization operator (8) and (9) are de-
picted by open and filled circles, respectively. Triangles show
the results obtained with the chiral polarization operator (10).
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leading order in the density �, in accordance with the
corresponding in-medium change of the chiral quark
condensate h �qqqi.

To the extent that U represents part of the (energy
independent) s-wave optical potential commonly used
in the phenomenological analysis of pionic atoms, at least
part of the missing repulsion is thus given a physical
interpretation in terms of the reduced in-medium f�� in
the denominator of (3). Of course, rather than construct-
ing the potential U and following the steps leading to (2)
and (3), one can directly solve the Klein-Gordon (KG)
equation with the full energy dependence of the polar-
ization operator 
�!�. This is the procedure systemati-
cally applied in this paper, with proper recognition of
gauge invariance in the presence of the electromagnetic
field.

The KG equation with Coulomb potential Vc�~rr�< 0
and total pion self-energy, 
tot�!; ~rr� reads

��!� Vc�
2 �r2 �m2

� �
tot�!� Vc; ~rr����~rr� � 0:

(4)

The total polarization operator expressed in terms
of local proton and neutron densities, 
tot�!; ~rr � �

tot�!;�p�~rr�; �n�~rr��, can be split into its s-wave and
p-wave parts:


tot�!;�p; �n� � 
�!� � �
S�!;�p; �n�

�
P�!;�p; �n�;

where we separate explicitly the phenomenological
s-wave absorption term quadratic in densities,

�
S�!;�p; �n� � �8�
�
1�

m�
2M

�
B0�p��n � �p�; (5)

parametrized as in Ref. [6]. HereM stands for the nucleon
mass. We use ImB0 � 0:063m�4

� from Ref. [4] and
ReB0 � 0 as our standard set and discuss variations of
ReB0 and ImB0 later. For the p-wave part 
P�!;�p; �n�,
we use the traditional Kisslinger form with inclusion of
short-range correlations and parameters as specified in
Ref. [4] (set A). The regular s-wave part, 
�!�, will be in
the center of our consideration below.

Given the smallness of the isospin-even �N scattering
amplitude T��!�, double-scattering (Pauli-blocking)
corrections in 
�!� are well known to be important
[2]. When those are included, the ‘‘phenomenological’’
s-wave pion polarization operator becomes [7]


phen�!;�p; �n� � �T��!���� T�eff�!;���; (6)

with

T�eff�!;�� � T
��!� �

3kF
8�2 ��T

��!��2 � 2�T��!��2�:

(7)

The local Fermi momentum kF�r� � �3�2��r�=2�1=3 is
rewritten in terms of the local density ��r�. Taking
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the polarization operator (6) at the on-shell pion energy
! � m�,


�!� � 
phen�! � m�;�p; �n�; (8)

together with the absorption part, we recover the tradi-
tional form of the (energy independent) s-wave optical
potential [4,8]. The proton and neutron density distribu-
tions �p�r� and �n�r� are given as two-parameter Fermi
functions �j�r� � �0;jf1� exp��r� Rj�=aj�g

�1. The cen-
tral density �0;j is normalized to the total number of
protons and neutrons in the nucleus. The proton radii,
Rp, are extracted from the nuclear charge radii following
from the analyses of muonic atoms [20], taking into
account the finite proton size hr2pi � 0:73 fm2:
Rp�

205Pb� � 6:66 fm and Rp�
207Pb� � 6:67 fm. Since

the charge radii have not been measured for the complete
chain of Pb isotopes, we have interpolated linearly be-
tween two neighboring measured isotopes. The diffuse-
ness coefficient is taken the same for 205;207Pb,
ap � 0:48 fm. For the neutron radii, we use values from
the proton-neutron rms-radius difference as obtained in
the Brueckner-Hartree-Fock calculations of Ref. [21]:
Rn�

205Pb� � 6:94 fm and Rn�207Pb� � 6:97 fm. We as-
sume an � ap. The numerical input is close to that in
Refs. [3,7].

Solutions of the wave equation (4) for Pb isotopes with
the energy independent (threshold) input (8) for the pion-
nuclear optical potential are shown in Fig. 1 by open
circles. The filled circles in Fig. 1 are the results obtained
with the polarization operator,


�!� � 
phen�!;�p�r�; �n�r��; (9)

in which we keep the explicit energy dependence as given
by the driving terms (1). The energy dependence effects
are evidently important, moving the calculated results
closer to the data. Indeed, with the gauge invariant in-
troduction of the electromagnetic interaction in the pion
092501-2
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polarization operator [via the replacement !!
!� Vc�r�], the off-shell pion-nucleon scattering ampli-
tudes are probed at energies !� Vc�r� > m�. This in-
creases the repulsion in T��!� and disbalances the
cancellation between the sigma term �N and the range
term �!2 in T��!�, giving T��!� Vc�r��< 0.
Omitting the replacement !! !� Vc�r� in 
�!�, we
would have !<m�, and this would reduce the repulsion
in T��!� and turn on attraction in T��!�, thus leading in
the wrong direction. Taking both the energy dependence
and the proper gauge invariant substitution via 
�!�
Vc�r�� is therefore an essential ingredient.

After these qualitative considerations, we proceed now
to the systematic calculation of the pion polarization
operator using in-medium chiral perturbation theory.
Here we extend the results of Ref. [16] at the two-loop
level by taking into account the explicit (off-shell) energy
dependence. The polarization operator has the form


�!� � 
0�!� �
ds�!� �
rel�!� �
cor�!�: (10)

The first term corresponds to the linear density approxi-
mation:

The isospin-even off-shell �N-scattering amplitude at
zero pion momentum can be written in the following
form (for ! > m�):

T��!� �
�N � !2

f2�
�

3g2Am
3
�

16�f4�
�

3g2AQ
2m�$

64�f4�
� iTim;

where  � g2A=4M� 2c2 � 2c3, �N � �4c1m2
� �

9g2Am
3
�=64�f2�, and Tim � !2Q=�8�f4��. The nucleon

axial-vector coupling constant has the value gA � 1:27.
We introduce the abbreviation Q �

��������������������
!2 �m2

�

p
. The sec-

ond-order low-energy constants c1;2;3 (for notations, see
Ref. [22]) are tuned to the empirical values of the sigma
092501-3
term [18], �N � 45 MeV, and the �N scattering length,
T��m�� � 0.

The parameter $ reflects freedom in the choice of the
interpolating pion field in the effective chiral Lagrangian
[13,23]. It enters all interaction vertices with three and
more pions. The one-loop correction to the (off-shell)
pion self-energy in vacuum depends also on this parame-
ter $ . By requiring that the residue at the pion pole
remains equal to one [24] as it is implicit in the form of
the KG equation (4), one gets the constraint $ � 0.

The isospin-odd off-shell �N amplitude at zero-
momentum reads

T��!� �
!

2f2�

�
1�

&!2

�2�f��2

�
�
!2Q

8�2f4�
ln
!�Q
m�

�
i
2
Tim;

(12)

with & � �gA�f�=M�2 � ln�2&=m��. The cutoff scale
& � 737 MeV ’ 8f� is chosen to reproduce the central
empirical value of the on-shell scattering amplitude at
threshold T��m�� � 1:85� 0:09 fm [19]. We neglect
here small additional counterterm contributions propor-
tional to the third order low-energy constants �ddj of
Ref. [25].

The next term in (10) corresponds to the important
Ericson-Ericson double-scattering correction [2] general-
ized to isospin asymmetric nuclear matter and off-shell
pions:

where kp;n � �3�2�p;n�
1=3 refer to the proton and neutron

Fermi momenta and
L�kp; kn;Q� � 4kpkn�Q2 � 3k2p � 3k2n� � 8Q�k3n � k3p� ln
Q� kn � kp
Q� kn � kp

� 8Q�k3p � k3n� ln
Q� kp � kn
Q� kp � kn

� �3�k2p � k
2
n�

2 � 6Q2�k2p � k
2
n� �Q

4� ln
�kn � kp�

2 �Q2

�kp � kn�2 �Q2 : (14)
The third term in (10) is a small relativistic correction
from the particle-hole (Born) diagram evaluated at zero
pion momentum:

The last term in (11) represents the effect induced by ��
interactions with two virtual pions being absorbed on the
nucleons in the Fermi sea, and by an additional two-loop
correction [16,23]:

The function H�kp; kn� consists of the last four terms
092501-3



FIG. 2. Dependence of energies and widths of pionic levels
for 205Pb on parameters of the optical potential. Solid lines
correspond to the variation of the neutron radius in the interval
�Rn � �0:2–0:2 fm. Dashed lines show the variation with
the pion nucleon sigma term �N � 20–65 MeV. Dotted lines
represent the variation of ReB0 � ��0:5– � 0:5� ImB0. Dash-
dotted lines are related to the variation of ImB0 � �0:063�
0:010� fm. Arrows indicate the directions in which results
move as the varied parameters increase. Triangles and experi-
mental points are the same as in Fig. 1.
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written in Eq. (12) of Ref. [16]. In the actual calculation,
the contribution 
cor�!� turns out to be negligibly small.

Solutions of the wave Eq. (4) for 1s and 2p levels using
(10) are shown in Fig. 1 by triangles. They agree well with
experimental data. We also find that the energy dependent
polarization operator (6) and (7) gives equally good re-
sults as (10) if the amplitude T��!� in (1) is extended to
include the!3 term in (12), with the parameter & tuned to
the empirical value of the scattering length.

In Fig. 2, we examine the dependence of our results for
205Pb on the less constrained parameters of the model.
Variations of the neutron radius Rn affect mainly the
binding energy, whereas the sigma term �N , ImB0, and
ReB0 have a stronger impact on the level width. Note the
strong correlation in the effects induced by changes of
ReB0 and �N . Finally, we mention that the new data on
three Sn isotopes [26] can provide an additional check for
our approach. The corresponding analysis will be pre-
sented elsewhere.

In summary, we have demonstrated that the long-
standing issue of the missing repulsion in the s-wave
pion-nucleus potential can be at least partially resolved
by taking into account the explicit energy dependence of
the pion self-energy and the gauge invariant incorpora-
tion of electromagnetic interactions. The experimental
data for 1s and 2p levels in Pb isotopes are well repro-
duced. We have also clarified that, to leading order, the
energy dependence effects in the pion polarization opera-
tor can be interpreted in terms of an in-medium reduction
of the pion decay constant, entering in an equivalent,
energy independent optical potential.
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