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We present a measurement of the branching fraction for the decay of the neutral B meson into
the final state J= ����. The data set contains approximately 56� 106 BB pairs produced at the
��4S� resonance and recorded with the BABAR detector at the PEP-II asymmetric-energy e�e� storage
ring. The result of this analysis is B�B0 ! J= ����� � �4:6 � 0:7 � 0:6� � 10�5, where the first
error is statistical and the second is systematic. In addition, we measure B�B0 ! J= 	0� � �1:6 �
0:6� 0:4� � 10�5.

DOI: 10.1103/PhysRevLett.90.091801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
decay mode B0 ! J= ���� to understand the J= 	0

component in the final state. Since these decays are
Cabibbo and color suppressed, they could be sensitive to

nificantly from the standard model prediction of B�B0 !
J= ����� � �4:8 � 0:8� � 10�5 [2]. This decay mode
has not previously been observed. CLEO quotes an upper
In the standard model, the decay B0 ! J= 	0 can give
rise to CP-violating asymmetries (directly and through
B0-B0 mixing) [1]. Therefore, it is interesting to study the
non-standard-model processes contributing, for example,
through penguin amplitudes. Large non-standard-model
effects could cause the branching fraction to differ sig-
091801-3
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FIG. 1 (color online). Signal for B0 ! J= ����. The
upper plot shows the distribution of events in the �E-mES

plane, where the box represents the final selection criteria.
The lower plot shows the distribution in mES of events
with j�Ej< 39 MeV, where the dashed (solid) line corre-
sponds to events in the K0

S (non-K0
S) region in M������

(0:45–0:55 GeV=c2). The vertical lines represent the final
selection.
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limit of B�B0 ! J= 	0�< 2:5� 10�4 at the 90% con-
fidence level [4]. Here we present the first measurement of
B�B0 ! J= �����.

The data used in the present analysis were collected at
the PEP-II storage ring with the BABAR detector, de-
scribed in detail elsewhere [5]. Charged particles are
detected, and their momenta measured, with a 40-layer
drift chamber (DCH) and a five-layer silicon vertex
tracker (SVT), both operating in a 1.5 T solenoidal
magnetic field. Surrounding the DCH is a detector of
internally reflected Cherenkov radiation (DIRC), and
outside this is a CsI(Tl) electromagnetic calorimeter
(EMC). The iron flux return of the solenoid is instru-
mented with resistive plate chambers (IFR). The data
sample used for the analysis contains approximately 56 �
106 BB pairs, corresponding to a luminosity of 51:7 fb�1

recorded near the ��4S� resonance. An additional
6:4 fb�1, recorded approximately 40 MeV below the
��4S� peak, were used to study continuum backgrounds.

Events containing BB pairs are selected based on track
multiplicity and event topology [6]. At least three tracks
are required to originate near the nominal beam spot,
with polar angle in the range 0:41< lab < 2:54 rad,
transverse momentum greater than 100 MeV=c, and a
minimum number of DCH hits used in the track fit. To
reduce continuum background the ratio of the second to
zeroth Fox-Wolfram moment, R2 � H2=H0, is required to
be less than 0.5. The sum of charged and neutral energy
must be greater than 4.5 GeV in the laboratory frame. The
primary vertex of the event must be within 0.5 cm of the
average measured position of the interaction point in
the plane transverse to the beam line.

The J= is reconstructed in the e�e� and ���� final
states. Electron candidates must satisfy the requirement
that the ratio of calorimeter energy to track momentum
lies in the range 0:75<E=p< 1:3, the cluster shape and
size are consistent with an electromagnetic shower, and
the energy loss in the DCH is consistent with that for an
electron. If an EMC cluster close to the electron track is
consistent with originating from a bremsstrahlung pho-
ton, it is combined with the electron candidate.

Muon candidates must satisfy requirements on the
number of interaction lengths of IFR iron penetrated
(N� > 2), the difference between the measured and ex-
pected interaction lengths penetrated (jN� � Nexp

� j< 2),
the position match between the extrapolated DCH track
and the IFR hits, and the average and spread of the
number of IFR strips hit per layer.

Pion candidates are accepted if they originate from
close to the beam spot and are not consistent with being
a kaon. The algorithm uses dE=dx information from the
SVT and DCH, and the Cherenkov angle and number of
photons from the DIRC.

Tracks are required to lie in polar-angle ranges where
particle identification efficiency is measured with known
control samples. The allowed ranges correspond approxi-
091801-4
mately to the geometrical acceptances of the EMC for
electrons, the IFR for muons, and the DIRC for pions.

Identified electron and muon pairs are fit to a common
vertex and must lie in the J= invariant mass interval
2.95 (3.06) to 3:14 GeV=c2 for the e�e� (����)
channel.
B0 candidates are formed by combining a J= candi-

date with a pair of oppositely charged pion candidates
consistent with coming from a common decay point. We
also require the vertex positions of the lepton and pion
pairs to be consistent. Further selection requirements are
made using two kinematic variables: the difference, �E,
between the energy of the candidate and the beam energy
Ecm

beam in the center-of-mass frame and the beam-energy
substituted mass, mES �

�������������������������������������
�Ecm

beam�
2 � �pcm

B �2
q

. After ap-
plying the loose requirements 5:2<mES < 5:3 GeV=c2

and j�Ej< 0:12 GeV, approximately one-quarter of the
events contain more than one B0 candidate, from which
we keep the one with the smallest j�Ej. The distribution
of the candidates in �E and mES is shown in Fig. 1.
For the final signal sample, we require jmES �
5279:0 MeV=c2j< 9:9 MeV=c2 and j�Ej< 39 MeV,
which correspond to 4� and 3� ranges in the resolutions
for mES and �E. After all selection criteria have been
applied, 213 events remain.

An unbinned, extended maximum-likelihood [7]
fit is performed on the invariant mass distribution
of the two pions for the selected events, to determine
the various contributions to the B0 ! J= ����

events. We consider five categories: (i) B0 ! J= 	0

events; (ii) B0 ! J= K0
S�K

0
S ! ����� events;

(iii) B0 ! J= ���� (non-	0 signal) events;
091801-4
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(iv) background from events without a real J= ; and
(v) inclusive-J= background from events containing a
real J= . A probability density function (PDF) is con-
structed for each of these five cases. The total PDF is then
formed from the sum of the five PDFs and fit to the data.
The B0 ! J= K0

S mode is not considered to be a signal
for the purposes of determining the branching fraction
for B0 ! J= ����.

The PDF used to model the 	0 resonance in the B0 !
J= 	0 mode is a relativistic P-wave Breit-Wigner func-
tion [8]:

F	�m� � 
m��m�P2Leff�1�=
�m2
	 �m2�2 �m2

	��m�
2�;

where ��m���0�q=q0�
3�m	=m�
�1�R2q2

0�=�1�R
2q2��.

q�m� is the pion momentum in the dipion rest frame,
with q0�q�m	�.m�M������ is the two-pion invariant
mass and P is the J= momentum in the B0 rest
frame. m	�770MeV=c2, �0�150MeV=c2, and m��
140MeV=c2. Leff is the effective orbital angular momen-
tum between the J= and the 	0, which can take any
value between 0 and 2 and so is allowed to float in the fit.
R is the Blatt-Weisskopf barrier-factor radius [9]. The fit is
performed with R equal to two values (0.5 and 1.0 fm
[10]) and the results of the two fits are averaged.

The PDF for the B0 ! J= K0
S mode is a single

Gaussian function with the mass and width fixed to values
obtained by fitting a sample of simulated J= K0

S events.
Allowing these parameters to vary in the final M������
fit does not change the results.

The PDF used to model the B0 ! J= ���� (non-	0

signal) contains a three-body phase-space factor
q�m�P�m� and a factor of P�m�2 motivated by angular
momentum conservation: Fph�m� � q�m�P�m�3. If the
���� is in an S wave, angular momentum conservation
results in a factor of P�m�2, while a D wave yields a
second power of P�m� or higher. We choose to use the
simple S wave for this PDF but take into account the
possibility of a D-wave contribution by allowing an
f2�1270� resonance in the fit as a systematic check.

The PDF for theM������ distribution for background
events without a real J= is derived from a fake-J= 
sample selected in data as described above except that at
least one of the lepton candidates must fail the appropri-
ate particle identification requirements. A Monte Carlo
study confirms that the M������ distribution obtained
with this procedure correctly describes the shape of the
non-J= background. The resulting distribution is pa-
rametrized using the sum of two Weibull functions [11]
and a Breit-Wigner. The Breit-Wigner describes the 	0

component of the non-J= background.
The PDF for the M������ shape for background

events containing a real J= is obtained from a simulated
B! J= X sample equivalent to a luminosity of 81 fb�1.
Events in which the system X is ���� (nonresonant), 	0,
or K0

S (����) are removed from the sample. The result-
ing shape is described by a Weibull function.
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The normalization of the background components is
obtained from samples in data and simulation. The level
of non-J= background is obtained from sidebands of the
J= mass distribution in data. The mES distribution for
these sideband candidates is then fit to an ARGUS func-
tion [12] to determine how many events pass the final
selection criterion. Scaling to the equivalent background
in the J= mass region, using an exponential to describe
the background shape in the J= mass distribution, the
expected non-J= background is found to be 35:7 � 1:2
events.

The level of inclusive-J= background is obtained
from the distribution of mES for events in the �E signal
region in both data and simulation. In each case, the mES

distribution is parametrized by a Gaussian function (to
represent signal or peaking background) and an ARGUS
function. Peaking background originates from B! J= X
decays such as B! J= K, B� ! J= 	�, and B!
J= K1 that accumulate near mES � 5:279 GeV=c2.

The nonpeaking component of the inclusive-J= back-
ground is determined by subtracting the non-J= contri-
bution, on the basis of the scaled sideband events
described above, from the total ARGUS background in
data. The peaking component is determined from the
Gaussian part of themES distribution in B! J= X simu-
lation, where events with X � ���� (nonresonant), 	0,
and K0

S��
���� have been removed. The sum of peaking

and nonpeaking components of the inclusive-J= back-
ground is found to be 61 � 11 events, of which the peak-
ing component comprises six events. Thus, any associated
uncertainties, such as branching fractions used in the
J= X simulation, will not contribute significantly to the
final systematic uncertainty.

The branching fraction is obtained from

B�B0 !J= �����

�
NJ= ��

NB0 � $J= �� �B�J= ! ‘�‘��
; (1)

where NJ= �� is the total signal yield obtained from the
fit,NB0 is the total number ofB0 andB0 in the data sample
[6], and $J= �� is the signal efficiency. The J= branching
fraction B�J= ! ‘�‘�� is fixed to 11.81% [3]. We as-
sume that the branching fraction for ��4S� ! B0B0 is
one-half.

The signal efficiencies for all requirements apart from
particle identification criteria are derived from simula-
tion. Lepton and pion identification efficiencies are deter-
mined with samples of known muons, electrons, and
pions in the data from the following processes:
����&, ����e�e�, e�e�, e�e�&, D� ! D0��

(D0 ! K���), and K0
S ! ����. The efficiencies are

determined as a function of momentum and polar
and azimuthal angle. The typical average efficiencies
(misidentification rates) for these particle identification
algorithms are 97% (2%), 87% (7%), and 95% (5%) for
091801-5
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electrons, muons, and pions, respectively. The final signal
efficiency of �27:1� 0:2�% is the average of the J= 	0

[�27:1� 0:3�%] and J= ���� (nonresonant) [�27:0�
0:3�%] efficiencies, where the error is from Monte Carlo
statistics.

A likelihood fit is performed on the M������ distri-
bution in data with the normalization of the non-J= 
background fixed to 35.7 events and the inclusive-J= 
background to 61. Thus, only the yields for J= 	0,
J= ���� (non-	0 signal), and J= K0

S events are al-
lowed to vary. The results of the fit are overlaid on the
data points in Fig. 2. The goodness-of-fit '2 is 33.4 for
38 data points.

The result of the fit is 84� 13 signal events, of which
28 � 10 are in the 	0 component and 55� 15 are in the
non-	0 signal component. The number of events in the K0

S
component is 28� 5. Inserting the result into Eq. (1)
yields the branching fraction B�B0 ! J= ����� �
�4:6� 0:7� � 10�5, where the error is statistical.

The signal yield and statistical error can be checked by
counting the number of events passing all the selection
criteria and subtracting the estimated numbers of back-
ground and J= K0

S events. This method gives 88� 15
J= ���� events.

The systematic errors on the final branching fraction
measurement arise from uncertainties on the signal effi-
ciency, fitted yield, number of BB pairs produced, and
J= ! ‘�‘� branching fraction. NBB is known to 1:1%
with the dominant contribution to the uncertainty coming
from the error on the B0B0 selection efficiency. B�J= !
‘�‘�� is known to 1.2% (fractional) [3].

The uncertainty on the pion identification efficiency is
1.8% per pion. Contributions to this error come from the
limited size of the data sample used to determine the
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FIG. 2 (color online). Distribution of the invariant mass
M������ for events passing all selection criteria. The solid
line is the result of the unbinned likelihood fit. The dashed line
represents the sum of background and non-	0 signal compo-
nents. The dotted (dot-dashed) line shows the total
(inclusive-J= ) background. The spike corresponds to B0 !
J= K0

S events.
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efficiency and the uncertainty on the kaon contamination
in the sample. Uncertainties on electron and muon par-
ticle identification efficiencies come from studies using
B! J= X events in data. Fits to the M�J= � distribution
in these events, under different selection criteria, give
estimates of the electron and muon identification efficien-
cies and their errors, yielding an uncertainty of 1.3%.

The tracking efficiency uncertainty is 1.3% per track
and is summed for the four tracks from the B0 decay. The
efficiency of the convergence requirement on the ����

vertex fit has been studied with a sample of  �2S� !
‘�‘� decays; the associated uncertainty is 1%. The un-
known 	0 helicity in the J= 	0 component of the final
sample introduces a systematic error on the efficiency of
2.5%. The limited amount of simulated data leads to an
uncertainty in signal efficiency of 0.7%. To determine the
effect of the signal and background shapes and the back-
ground yields on the fitted yields, the fixed parameters of
these PDFs are varied within their uncertainties, allow-
ing for correlations. This produces a total systematic error
due to fit parameter variation of 9.7%, which is domi-
nated by the errors in the background yields. The final fit
neglects resonances such as f0�980�, f2�1270�, and
	0�1450�. Allowing for the addition of such terms in the
likelihood function results in a systematic uncertainty on
the yield of 2.1%. Varying the Blatt-Weisskopf radius
between 0.5 and 1.0 fm gives no change in the total yield,
while the variation of Leff leads to a systematic uncer-
tainty of 0.1%. The total fractional systematic uncertainty
from all sources is found to be 12.3%.

The analysis is repeated with variations in the selection
criteria. Taking into account statistical correlations be-
tween the results, we find that variations are consistent
with statistical fluctuations due to the addition or removal
of some of the events in the sample.

The branching fractions are measured separately for
the modes J= ! e�e� and J= ! ���� yielding the
results B�B0 ! J= �����ee � �5:3� 1:1� � 10�5 and
B�B0 ! J= ������� � �4:0� 1:0� � 10�5, where the
errors are purely statistical.

The M������ distribution shows a clear peak at the
	0 mass. The fit result of 28� 10 events for the 	0 signal
leads to a branching fraction of B�B0 ! J= 	0� �

1:6� 0:6�stat� � 0:4�syst�� � 10�5. The systematic error
includes a contribution from the effect of using an alter-
native PDF to describe the non-	0 signal. The shape is
from a polynomial fit to data recorded in �-� scattering
experiments [13] and thus provides an empirically de-
rived shape, in contrast to the default non-	0 signal PDF,
which is based on a phase-space assumption. The assump-
tion that the non-	0 signal is predominantly S wave, and
therefore interference with the 	0 can be neglected, has
been checked on data. A significant S-wave contribution
means that the leptons from the J= have a helicity
angle distribution / sin2�J= �. For events in data with
M������ > 1:1 GeV=c2, we subtract the helicity cosine
091801-6
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distribution for events withmES < 5:27 MeV=c2 from the
distribution for events in the signal mES region and find
that the shape of the resulting distribution is consistent
with sin2�J= �. Interference between S- and P-wave sig-
nal components integrates out in the M������ projec-
tion, as long as the acceptance is symmetric in the cosine
of the dipion helicity angle, ��. Studies using simulated
nonresonant S-wave events show that there is no signifi-
cant odd component to the acceptance function in
cos����. Consequently, there is no such interference
contribution to the ���� mass distribution. The contri-
bution to the fractional systematic uncertainty on
B�B0 ! J= 	0� is 1.8% from varying the Blatt-
Weisskopf radius and 3.3% from varying Leff .

In summary, the branching fraction for B0 meson
decay to the final state J= ���� has been measured
for the first time. The result, B�B0 ! J= ����� �

4:6� 0:7�stat� � 0:6�syst�� � 10�5, is consistent with
the standard model prediction [2]. In addition, the tech-
nique of fitting the M������ distribution allows a mea-
surement of the branching fraction for the J= 	0

component. The result is B�B0 ! J= 	0� � 
1:6�
0:6�stat� � 0:4�syst�� � 10�5.
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