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Antispiral Waves in Reaction-Diffusion Systems
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We report spontaneous antispiral wave formation in typical reaction-diffusion systems. Our findings
qualitatively reproduce a series of phenomena recently observed in a Belousov-Zhabotinsky–type
chemical reaction. We found that antispiral waves can occur only near the Hopf bifurcation, when the
system is characterized by small amplitude oscillatory (as opposed to excitable) dynamics. For
reaction-diffusion systems in the vicinity of the Hopf bifurcation, the specific conditions required
for antispiral formation are established here through theoretical analyses and numerical simulations.
Thus, this work provides a comprehensive description of the mechanisms underlying antispiral waves in
reaction-diffusion systems.
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wave fronts at small curvatures (1=r) is specified by the
classic eikonal equation,

tor. Because the CGL system is near the Hopf bifurcation,
the motion is sinusoidal, which is in sharp contrast to the
In recent years, spatiotemporal pattern formation in
systems driven away from equilibrium has been exten-
sively investigated theoretically and experimentally [1].
Among a wide variety of patterns studied, spiral waves,
which occur in biological systems and inorganic process-
es, seem to be of particular importance and interest [2].
The propagation direction of spiral waves did not receive
much attention until a recent observation of inwardly
rotating spirals, termed antispirals, in the Belousov-
Zhabotinsky (BZ) reaction dispersed in water droplets
of a water-in-oil aerosol OT (AOT) microemulsion (BZ-
AOT system) [3]. In the BZ-AOT system, Vanag and
Epstein found that new waves with high speed first
emerge at the boundary between the basins of adjacent
antispirals, then split and move slowly toward their cen-
ters, where they annihilate [3].

In a series of recent studies,Vanag and Epstein explored
the origin of antispirals. First, they produced antispirals
using a ring-shaped apparatus with different diffusion
coefficients for the activator variable on the inner circle
and the outer annulus [3]. In a succeeding paper on
pattern formation in the BZ-AOT system [4], they devel-
oped a four-variable model to explain accelerating
waves—waves that rush to fill the vacancy left by reced-
ing waves of neighboring antispirals. More recently, using
perturbation techniques they generated inwardly propa-
gating concentric waves or antipacemakers [5] that were
similar to those found by Zhang et al. [6]. While these
studies illuminated some aspects of antispiral waves, the
fact that three completely different models were used to
explain the dynamics [3–5] indicates that the mechanism
of spontaneous antispiral formation is still unclear.

It is well known that the geometrical shape of a wave
front is among many factors that determine its conduction
velocity C. In an excitable medium, this relationship for
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C�r� � c�
D
r
; (1)

where c is the constant conduction velocity of a plane
wave, and D is the diffusion coefficient of the fast-chang-
ing activator variable of the medium. In deriving the
above formula [7,8], one of the key assumptions for
the typical excitable medium, as exemplified by the
FitzHugh-Nagumo (FHN) model [9],

@u=@t � �u� u3=3� v�=��Dur
2u;

@v=@t � u� �v� �Dvr
2v;

(2)

is a very small ratio � (0< � � 1) between the fast
excitation rate and the slow recovery rate. As a conse-
quence of this assumption, the dynamics are excitable
and the system behaves like a relaxation oscillator; that is,
the motion is highly inharmonic with asymmetric alter-
nating fast and slow variations [Fig. 1(a)]. Furthermore,
under this assumption, spiral waves are characterized by
wide activation pulses with sharply rising fronts in space,
as shown in Fig. 1(b). However, if the assumption is not
true, as in the following cases in which the systems
approach the Hopf bifurcation and the dynamics are
harmonically oscillatory rather than excitable, then
Eq. (1) will no longer hold [12,13], and in real systems,
new patterns may emerge [3].

The prototype of an oscillatory medium close to the
Hopf bifurcation point is the complex Ginzburg-Landau
(CGL) equation [14],

@W
@t

� W � �1� i��WjWj2 � �1� i��r2W; (3)

where i is the imaginary unit and r2 � �@2=@x2� �
�@2=@y2� denotes the two-dimensional Laplacian opera-
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FIG. 1. Spiral and antispiral waves in typical excitable (FHN)
and oscillatory (CGL) media. (a) Time history (arbitrary units)
of the fast activator variable u of the FHN model. The solid line
and the dashed line correspond to the small amplitude,
sinusoidal oscillation (� � 1:95) and the large amplitude
relaxation oscillation (� � 0:09), respectively. (b) Snapshot
of spirals in the FHN model (� � 0:09, � � 0:5,  � 0:7, Du �
1:0, Dv � 0:0), where the arrow indicates outward propagation
of waves. The spiral waves were initiated on a 100� 100 grid
by the cross-field protocol [10]. (c) The parameter plane (�, �)
shows where spirals (  ) and antispirals ( � ) exist in the CGL
system. The shaded areas indicate where no plane wave
can remain stable according to the Benjamin-Feir instability
criterion: 1� ��< 0. Spirals occur when � > � 	 0
or 0 	 � > �; while antispirals occur when � > � 	 0 or 0 	
� > �. On the borderline � � �, the medium may either
support phase waves or remain static, depending on the pa-
rameter choice. Points are evenly distributed in the parameter
regions �� 	 0 with � 2 ��2:5; 2:5�, � 2 ��3; 3� and a step
size of 0.5. For each point, the CGL system was integrated a
total of 4� 105 steps using the explicit Euler method with time
step 
t � 0:005, and the standard five-point approximation for
the Laplacian operator [11] with space step 
x � 
y � 0:5.
Spirals or antispirals were spontaneously formed on a 200�
200 grid with no-flux boundaries from random initial condi-
tions. The results remain the same when checked with the
fourth order Runge-Kutta integrating method. (d) Snapshot
of a well-developed single antispiral in the CGL system (� �
�1:5, � � 0:0). The arrow indicates inward propagation of
waves, which move toward the center. The system was inte-
grated using the same methods as in (c) with time step 
t �
0:01, space step 
x � 
y � 0:5, and a total of 4� 105 inte-
gration steps. The antispirals were spontaneously formed on a
100� 100 grid with no-flux boundaries from random initial
conditions. (e)–(f) Snapshots of antispirals in the CGL system
(� � 1:5, � � 0:0), where the waves annotated 1, 2, and 3 in
(e) propagate to their corresponding positions in (f), demon-
strate inwardly propagating antispiral motions.
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highly inharmonic motion of the excitable FHN model.
When two real parameters � and � vary, the complex
field W, which describes the amplitude and phase of
pattern modulations, will exhibit rich dynamical behav-
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iors including both spirals and antispirals [see Fig. 1(c)].
We note that previous studies of the CGL equation [15–
17] did not report antispiral behavior [18].

The specific type of antispiral patterns in the CGL
system was dependent on the parameter choice.
Figure 1(d) shows a well-developed single antispiral
spontaneously formed when � � �1:5, � � 0:0 [19].
Furthermore, accelerating waves were observed along
with antispirals in our simulations. On the right side of
Fig. 1(e), a new wave (annotated 3) first emerges at the
boundary between the basins of two adjacent antispirals,
then accelerates [Fig. 1(f)] into the vacant area left by two
receding waves (annotated 1 and 2) which move apart
and slowly towards the centers of their respective anti-
spirals [similarly, see Fig. 1(b) in [3] and Figs. 3(a)–3(e)
in [4] ]. These wave behaviors were also observed for
antispirals in other reaction-diffusion systems to be dis-
cussed below.

It has been shown that wave-propagation direction
(outward or inward) is governed by the result of the
competition between (spiral or antispiral) waves and their
surrounding bulk oscillations [3]. Moreover, spiral or
antispiral waves in general behave asymptotically as
plane waves far from their cores. Therefore, we hypothe-
size that the condition for the occurrence of antispirals is
that the frequency of the bulk oscillation (�0) is larger
than the asymptotic frequency of the (antispiral) wave
(�k), i.e., j�0j > j�kj [20]. For the CGL system, it is
known [1,14,16,21] that �0 � � and �k � �� ���
��k2, where k is the wave number. Here, for simplicity,
we consider only the case when two real parameters �
and � are of the same sign, i.e., �� 	 0 [22]. Note 0 

k < 1 [21]; thus from the condition j�0j > j�kj the pa-
rameter regime where antispirals occur is � > � 	 0 or
0 	 � > �. Similarly, the parameter regime where spi-
rals occur (j�0j< j�kj) is � > � 	 0 or 0 	 � > �.
These theoretical results agree with those from numerical
simulations [see Fig. 1(c)].

To further examine these results in other reaction-
diffusion systems and to compare with experimental
observations in the BZ-AOT system, we consider the
aforementioned FHN model of Eq. (2). This system has
been widely used to explore spiral-wave behavior in
excitable BZ chemical reactions [2]. If, however, the
FHN model is in the vicinity of the Hopf bifurcation
point, the motion will be sinusoidal with relatively small
amplitude oscillations that can form antispirals sponta-
neously [see Fig. 1(a)]. Because the system undergoes a
supercritical (g0 > 0) Hopf bifurcation, the CGL approxi-
mation is valid [14,23]. Following the classic reductive
perturbation method [14,23], a unique CGL equation
with parameters

� � g00=g0 � �

�������������
�

1� �

r
;

� � d00=d0 �
�������������
�

1� �

r
Dv �Du

Dv �Du

(4)
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FIG. 2. Antispiral waves in the FHN and the Oregonator
models, where the arrows indicate inward propagation of
waves. Both models were integrated using the same methods
as in Fig. 1(c) with time step 
t � 0:01, space step 
x � 
y �
0:5, and a total of 5� 106 integration steps. The antispirals
were spontaneously formed on a 100� 100 grid with no-flux
boundaries from random initial conditions. The results remain
qualitatively unchanged when decreasing the time step 
t or
increasing the total integration steps. (a),(b) Snapshots of
antispirals in the FHN system (� � 1:95, � � 0:5,  � 0:0,
Du � Dv � 0:005). (c),(d) Snapshots of antispirals in the FHN
system (� � 1:3, � � 0:75,  � 0:0, Du � Dv � 0:005).
(e) Time history (arbitrary units) of the activator variable u
of the Oregonator model. The solid line and the dashed line
correspond to the small amplitude, nearly sinusoidal oscillation
(� � 0:75) and the large amplitude relaxation oscillation (� �
0:01), respectively. (f) Snapshot of antispirals in the Oregonator
model (� � 0:75, q � 0:002, f � 0:95, Du � Dv � 0:001).
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can be defined from the original FHN model by setting
 � 0:0. We observed both spirals and antispirals depend-
ing on the parameter values. Of particular interest here is
the simplest case when Du � Dv, because according
to Eq. (4) the parameter � � 0:0. When varying
the parameter � of the FHN model in the range 0:2 

� 
 0:8, from Eq. (4) the corresponding parameter � of
the CGL equation changes within the range �0:5 
 � 

�2. As predicted from the CGL equation [see Fig. 1(c)],
in the above parameter region of the FHN model we
observed only antispirals. For example, when � � 0:5,
Du � Dv � 0:005, Eq. (4) gives � � �1:0, � � 0:0.
Clearly, these two parameters are within the antispiral
regime of the CGL equation given in Fig. 1(c). Consistent
with this prediction, a direct numerical simulation of the
FHN model (� � 1:95) in the vicinity of the Hopf bifur-
cation (�c � 2:0) shows antispirals in Figs. 2(a) and 2(b)
[19]. Figures 2(c) and 2(d) exhibit antispiral waves for
another case of the FHN model (� � 1:30, � � 0:75, and
Du � Dv � 0:005) near the Hopf bifurcation (�c �
1:333), which are also consistent with the CGL prediction
with � � �1:73, � � 0:0 from Eq. (4). Furthermore,
these antispirals resemble experimental observations in
the BZ-AOT system [see Figs. 1(a) and 1(b) in [3] ].
Because the system is very close to the Hopf bifurcation,
the waves have relatively small amplitude, as observed for
small amplitude oscillating packet waves in the BZ-AOT
system [5]. Note that to generate antispirals spontane-
ously, the diffusion coefficients in the FHN model (or
the Oregonator model below) must be extremely small
( � 0:005) compared with those ( � 1:0) in the excitable
case when 0< � � 1; otherwise, fast propagating phase
waves will dominate the entire medium. Consistent with
these model predictions, the diffusion coefficients in the
BZ-AOT system were also small (roughly 2 or 3 orders of
magnitude smaller than normal, due to the percolation
effect) [3,4] when antispirals occurred.

References [3–5] did not specify the type of Hopf
bifurcation (subcritical or supercritical) for the BZ-AOT
system. For this reason, in addition to the supercritical
case described above (CGL equation and the FHN model
where the CGL approach is applicable), we investigated
the subcritical case using the Oregonator model of the
BZ chemical reaction. In dimensionless form, the two-
variable version of the Oregonator model is [24,25]

@u
@t

�
1

�

�
u� u2 � fv

u� q
u� q

�
�Dur

2u;

@v
@t

� u� v�Dvr
2v;

(5)

where the activator variable u and the inhibitor variable v
represent the concentrations of the autocatalytic species
HBrO2 and the transition ion catalyst in the oxidized state
Ce3� or Fe3�, respectively. The parameter �, which de-
scribes different reaction rates for the two variables u and
v (and plays a similar role as described earlier for the
FHN model), is used as the control parameter. With
088302-3
variation of the parameter �, the system undergoes a
subcritical (g0 < 0) Hopf bifurcation in the oscillatory
parameter regime 0:5< f < 1� q [1]. In this case, the
CGL approximation cannot be applied [14,23]—numeri-
cal simulation must be used. We set q � 0:002, f � 0:95.
When � is very small, for example, � � 0:01 (which was
widely used in previous theoretical studies of the excit-
able BZ reaction [26]), the system becomes a typical
relaxation oscillator with large amplitude, highly inhar-
monic oscillations [Fig. 2(e)]. The relaxation oscillation
closely resembles the large excursion motion of the ex-
citable case [1], in which spiral waves have been exten-
sively investigated previously [27]. If, however, the
system is in the vicinity of the Hopf bifurcation point
(�c � 0:7782), the motion will be sinusoidal with rela-
tively small amplitude oscillations that can form antispi-
rals spontaneously [see Fig. 2(e)]. Figure 2(f) exhibits
antispiral waves for such a case when � � 0:75, Du �
Dv � 0:001 [19]. To spontaneously form antispirals, the
diffusion coefficients in the Oregonator model must be
extremely small ( � 0:001) compared with those ( � 0:01)
088302-3
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in the excitable case when � � 0:01 [26]. Finally, a direct
estimation from numerical simulations of the Oregonator
model gives !0 � 0:3806, !k � 0:3770. The inequality
j!0j > j!kj, which is established for the occurrence of
antispirals in the CGL equation, remains true even when
the CGL approximation fails.

Here we have shown antispiral waves spontaneously
formed in typical reaction-diffusion systems: the CGL
equation, the FHN model, and the Oregonator model of
the BZ reaction. Notably, our numerical results are in
agreement with a series of observations in recent experi-
ments on the BZ-AOT system [3–5], suggesting a similar
mechanism underlying the antispiral phenomenon.
Through our theoretical analyses and numerical simula-
tions, the condition required for reaction-diffusion sys-
tems close to the Hopf bifurcation (whether supercritical
as in the FHN model or subcritical as in the Oregonator
model) to form antispirals is now determined: the fre-
quency of the bulk oscillation (!0) must be larger than the
asymptotic frequency of the (antispiral) wave (!k), i.e.,
j!0j > j!kj.

It has been speculated that, similar to spiral waves,
antispiral waves might occur in cardiac tissue [3].
However, this work suggests that it is unlikely that anti-
spiral waves could form in the heart, where the under-
lying dynamics are excitable and far from the Hopf
bifurcation. Alternatively, given that the percolation
effect observed in the BZ-AOT system prevails in pro-
longed geological evolution, those centers where in-
wardly rotating, percolation-driven antispiral waves
annihilate may serve as the substrate for depositing pre-
cious metals such as copper or uranium (see [28] and the
references therein).

This work was supported by the American Heart
Association (0030028N). We thank Calin Culianu for
programming assistance.
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