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Second Order Phase Transition in Neural Rate Coding: Binary Encoding is Optimal
for Rapid Signal Transmission
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Here, we derive optimal tuning functions for minimum mean square reconstruction from neural rate
responses subjected to Poisson noise. The shape of these tuning functions strongly depends on the length
T of the time window within which action potentials (spikes) are counted in order to estimate the
underlying firing rate. A phase transition towards pure binary encoding occurs if the maximum mean
spike count becomes smaller than approximately three. For a particular function class, we prove the
existence of a second-order phase transition. The analytically derived critical decoding time window
length is in precise agreement with numerical results. Our analysis reveals that binary rate encoding
should dominate in the brain wherever time is the critical constraint.
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number of spikes. This tuning function approach ap-
pears to be particularly tailored to the issue of neural
coding while, from a technical point of view, our work
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The striking feature of neurons in the central nervous
system is the use of action potentials as a means of
communication. Correspondingly, the coding properties
of neurons are frequently characterized by tuning curves,
which display the average firing rate of neurons as a
function of the stimulus parameters of interest. This
way of description is closely related to the idea of analog
coding, which constitutes the basis for many neural net-
work models. Apart from the success in stimulus recon-
struction experiments, the idea of rate coding can also be
justified by a basic biophysical property of neurons,
namely, the temporal integration of the postsynaptic cells
over the current pulses induced by the presynaptic spikes.
Reliable inference from the observed number of spikes
about the underlying firing rate of a neuronal response,
however, requires a sufficiently long time interval, while
integration times of neurons in vivo [1] as well as reaction
times of humans or animals when performing classifica-
tion tasks [2,3] are known to be rather short. Therefore, it
is important to understand how neural rate coding is
affected by the limited time window, which in reality
is available for decoding.

In 1996, Softky pointed out that there is a trade-off
between the higher information content of each analog
‘‘message’’ and the lower rate at which this message may
be sent [4], so that the question arises how relevant the
idea of analog coding actually is for neuronal processing
in the brain. Although this is an important problem that
even may be decidable experimentally, it did not receive
much attention in neuroscience until today.

Here, we seek for optimal tuning functions that
minimize the minimum average squared reconstruc-
tion error for a uniform source signal transmitted through
a Poisson channel as a function of the maximum mean
0031-9007=03=90(8)=088104(4)$20.00 
contributes to a rate-distortion theory for the Poisson
channel [5].

In formal terms, the issue is to optimally encode a real
random variable x in the number of pulses emitted by a
neuron within a certain time window. Thereby, x stands
for the analog signal computed by a presynaptic neuron
that shall be transmitted to subsequent neurons. The
neuronal output actually read out by subsequent neurons,
however, is given by the number of spikes k integrated
within a time interval of length T. The statistical depen-
dency between x and k then is specified by the assumption
of Poisson noise [6]

p�kj��x�� �
���x��k

k!
expf���x�g; (1)

and the choice of the tuning function f�x�, which together
with T determines the mean spike count ��x� � Tf�x�.
An important additional constraint is the limited dy-
namic range of the neuronal firing rate, which can be
included by the requirement of a bounded tuning function
[fmin 
 f�x� 
 fmax, 8 x]. Since inhibition can reliably
prevent a neuron from firing, we here consider the im-
portant case fmin � 0 only. Instead of specifying fmax, we
impose a bound directly on the mean spike count [i.e.,
��x� 
 �], because fmax constitutes a meaningful con-
straint only in conjunction with a fixed time window
length T.

As an objective function measuring the distortion,
we consider the minimum mean squared error (MMSE)
with respect to the uniform distribution ��x� � 1 for
x 2 �0; 1�:

	2���x�� � E�x2� � E�x̂x2�R
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FIG. 1. The upper panel shows a bifurcation plot for #��� �
w and #��� � w of the optimal tuning function in S1 illustrat-
ing the phase transition from binary to continuous encoding.
The dotted line separates the regions before and after the phase
transition in all three panels. Left from this line (i.e., for
� <�c) the step function given by Eqs. (3) and (4) is optimal.
The middle panel shows the MMSE of this step function
(dashed line) and of the optimal tuning function in S2 (solid
line), which becomes smaller than the first one after the phase
transition. The relative deviation between the minimal errors of
S1 and S2 [i.e., �	2

S1
� 	2

S2
�=	2

S2
] is displayed in the lower

panel.
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where x̂x�k� � E�xjk� denotes the mean square estimator,
which is the conditional expectation (see, e.g., [8]). The
exact shape of the optimal tuning function clearly de-
pends on the distribution of x. Since natural signals are
confined to a finite range, we choose the uniform distri-
bution for the sake of symmetry and simplicity. The
existence of the phase transition, however, appears to be
independent of the shape of ��x�. In particular, we ob-
served the same qualitative dependence in the case of
other unimodal distributions [we checked for ��x� �
�� 1�2�0:5� j0:5� xj� with  � 0:2, 0.5, 1, 2, 4,
and 10 exhibiting a phase transition at �c � 2:9, 2.9,
2.8, 2.7, 2.6, and 2.5, respectively].

Since in reality fmax is bounded and fixed, � � fmaxT
is directly related to the rate 1=T at which independent
signals can be transmitted. Hence, in our study the trade-
off between the higher information content of each ana-
log message and the lower rate at which this message may
be sent corresponds to the larger amount of time T that is
necessary to achieve a lower distortion 	2 by increasing
the range of analog signaling.

As derived in [9] on the basis of Fisher information, the
optimal tuning function for a single neuron in the asymp-
totic limit � ! 1 has a parabolic shape [i.e., fasymp�x� �
fmaxx

2]. For any finite �, however, this tuning function is
not necessarily optimal and, in the limit � ! 0, it is
straightforward to show that the optimal tuning curve is
a step function

fstep�xj#� � fmax ��x� #�; (3)

where ��z� denotes the Heaviside function that equals
one, if z > 0 and zero if z < 0. The optimal threshold
#��� of the step tuning curve depends on � and can be
determined analytically:

#��� � 1�
3�

���������������������
8e�� � 1

p

4�1� e���
; (4)

as well as the corresponding MMSE [10]:

	2�fstep� �
1

12

�
1�

3#2���

f�1� #�����1� e���g�1 � 1

�
:

(5)

The binary shape for small � and the continuous
parabolic shape for large � implies that there has to be
a transition from discrete to analog encoding when � is
increased. Unfortunately, it is not possible to determine
the optimal tuning function within the entire set of all
bounded functions B :� ffjf:�0; 1� ! �0; fmax�g using the
calculus of variations. Instead we chose a certain parame-
trized function space S � B in advance that is feasible
for the optimization.

In this paper, we consider two function classes S1;S2,
which both contain the binary tuning function as well as
the asymptotic optimal parabolic function as special
cases. Furthermore, S1 is a proper subset of S2. By nu-
088104-2
merical optimization within S2 for various �, we found a
clear phase transition from binary to analog encoding at a
critical �c with 2:9<�c < 3:0 (Fig. 1, upper panel).
Although the critical value depends on the function space
within which the optimization is performed, we did not
find any tuning function with an error smaller than the
MMSE of the step function for � < 2:9 (we investigated
various function spaces, for which the results will be
published elsewhere [10]).

Our interest in S1 results from the fact that we can
analyze the phase transition in this subset analytically,
while S2 is a quite large function space that is likely to
sufficiently approximate all relevant tuning functions.
Altogether S2 has six free parameters a 
 b 
 c 2
�0; 1�, fmid 2 �0; fmax�, �;� 2 �0;1� and the parametri-
zation of the tuning functions is given by
088104-2
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fS2�xja; b; c; fmid; �; �� �

8>><
>>:
0 0< x< a
fmid�

x�a
b�a�

� a < x < b
fmid � �fmax � fmid��

x�b
c�b�

� b < x < c
fmax c < x < 1

: (6)

Numerical optimization leads to the minimal MMSE as a function of � as displayed in Fig. 1 (middle panel). The
parametrization of the tuning functions in S1 is given by

fS1�xjw;�� �

8<
:
0 0< x< #��� � w
fmax�

x�#����w
2w �� #��� � w< x< #��� � w

fmax #��� � w< x< 1
; (7)
with w 2 �0; 1� and � 2 �0;1�. The integrals entering
Eq. (2) for the MMSE in case of the tuning function fS1

read

Z 1
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(8)
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1
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�
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�k� 1

��

�
����������
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�
p

� �1� #��� � w�fkmaxe
�fmax

�
; (9)

where �v�z� �
R
v
0 s

z�1 e�sds denotes the truncated
Gamma function. The minimal MMSE for these tuning
functions is only slightly worse than that for S2. The
relative difference between both is plotted in Fig. 1
(lower panel) showing a maximum deviation of 3:2%.
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In particular, the relative deviation is extremely small
around the phase transition. This comparison suggests
that a restriction to S1, which is a necessary simplifica-
tion for the following analytical investigation, does not
change the qualitative results.

The phase transition from binary to analog en-
coding corresponds to a structural change of the objec-
tive function 	2�w;��. In particular, the optimality of
binary encoding for � <�c implies that 	2�w; �� has a
minimum at w � 0. The existence of a phase transi-
tion implies that with increasing � this minimum
changes into a local maximum at a certain critical
point � � �c. Therefore, the critical point can be
determined by a local expansion of 	2�w; �;�� �
	2�0; �; �� �

P
1
k�1 gk��;�� w

k

k! around w � 0, because
the sign of its leading coefficient A���� (i.e., the coef-
ficient gk with minimal k that does not vanish identically)
determines whether 	2�w; �;�� has a local minimum or
maximum at w � 0. Accordingly, the critical point is
given as the solution of A���� � 0.

With quite a bit of effort, one can prove that the first
derivative of 	2�w;�;�� vanishes for all �. The second
derivative, however, is a decreasing function of � and,
hence, constitutes the wanted leading coefficient,
A���� �
1

4�e� � 1�2

�
8� 7e� � 16e2� � e3� �

���������������������
1� 8e��

p
f2� e���3� e��6� e���g

� f16e� � 48e2� � 4e3� �
���������������������
1� 8e��

p
�4e� � 8�4� e���g
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: (10)

Obviously, it is not possible to write the zeros of A���� in a closed form. The numerical evaluation of the critical point
�c��� as a function of � is displayed in Fig. 2. Note that we have treated � as a fixed parameter, which means that we
determine the critical point of the phase transition in all subsets S1��� of S1 that correspond to a fixed �. It is
straightforward to show that the critical point �c with respect to the entire class S1 is given by the minimum of �c���.
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FIG. 3. Examples of the optimal tuning curve within S1 for
� <�c (left), � � 5 (middle), and � � 50 (right).
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FIG. 2. The critical maximum mean spike count �c is shown
as a function of � (numerical evaluation at � 2
f0:5; 0:505; 0:51; . . . ; 3:5g). The minimum �c � 2:98291�
10�7 at � � 1:9 determines the phase transition in S1.
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We determined this value up to a precision of �0:0001 to
be �c � 2:9857. The shape of the optimal tuning function
before and after the phase transition is displayed in Fig. 3.
Since the structural change of the objective function is
governed by a change of the sign of the leading coeffi-
cient, we thus have found a second-order phase transition.

Our study reveals that optimal encoding with respect
to the minimum mean squared error is binary for maxi-
mum mean spike counts smaller than approximately
three. Within the function class S1, we determined a
second-order phase transition from binary to continuous
encoding analytically. With respect to mutual informa-
tion, the advantage of binary encoding holds even up to a
maximum mean spike count of about 3.5 (results not
shown). Since the firing rates of cortical neurons are
low relative to their short integration times, these results
suggest that neural encoding in cortex should in fact be
binary. In contrast, most experimental studies do not
report on binary tuning functions, but instead show
smooth tuning curves only. However, the shape of a tun-
ing function always depends on the stimulus set used.
Only recently, experimental studies under natural stimu-
lus conditions provided evidence for the idea that neuro-
nal encoding is essentially binary [11]. Particularly
striking is this observation for the H1 neuron of the fly
[12], for which the coding properties are probably better
understood than for most other neurons [13]. In [12], it is
remarkable that the neuronal response is the more binary
the less noisy the stimulus conditions are (the noise level
is determined by the different light conditions at midday,
half an hour before, and half an hour after sunset),
suggesting that the single neuron in fact does not encode
more than two different states of the stimulus at a time.

Additional support for the potential relevance of a
binary neural code comes from intracellular recordings
in vivo revealing that the subthreshold membrane poten-
tial of many cortical cells switches between up and down
states [14] depending on the stimulus. Furthermore, the
dynamics of bursting cells plays an important role for
088104-4
neuronal signal transmission [15] and may also be seen as
evidence for binary rate coding. In light of these experi-
mental facts, we conclude from our results that the idea of
binary tuning constitutes an important hypothesis for
neural coding that should be tested experimentally.
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