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Dynamics of Competitive Evolution on a Smooth Landscape

Weiqun Peng, Ulrich Gerland, Terence Hwa, and Herbert Levine
Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego,

La Jolla, California 92093-0319
(Received 4 April 2002; published 26 February 2003)
088103-1
We study competitive DNA sequence evolution directed by in vitro protein binding. The steady-state
dynamics of this process is well described by a shape-preserving pulse which decelerates and eventually
reaches equilibrium. We explain this dynamical behavior within a continuum mean-field framework.
Analytical results obtained on the motion of the pulse agree with simulations. Furthermore, finite
population correction to the mean-field results are found to be insignificant.
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sider the evolution process of Ref. [4] applied to much
longer sequences so that that the steady-state dynamics

computer. We fix three of the model parameters at N �
5
 105, L � 170, and �0 � 0:01 from here on, and vary
Competitive evolution such as breeding has been prac-
ticed for ages.With recent advances in molecular biology,
this method is widely used to develop novel proteins and
DNA sequences for a variety of applications [1]. The basic
idea of competitive molecular evolution is straightfor-
ward: in each generation, a number of molecules with
certain desired characteristics are selected from the popu-
lation; they are then diversified (via point mutation and/or
recombination [2]) and amplified back to the original
population size. The ‘‘speed’’ of evolution as well as the
final equilibrium distribution depend on a variety of
factors such as the mutation rate, selection strength,
molecule length, and population size. A systematic quan-
titative understanding of these dependencies is lacking
thus far. Such understanding is not only of theoretical
interest, but also helpful in improving the efficiency
of the breeding processes. In this study, we develop a
theoretical model for the simplest type of competitive
evolution involving only point mutations on a smooth
landscape. We achieve an understanding of this model
with concepts and techniques developed in the study of
front propagation [3].

To make the discussion concrete, we focus on the
in vitro evolution of DNA sequences due to competitive
binding to proteins. An example of such a system is the
recent experiment of Dubertret et al. [4], where DNA
sequences are selected competitively according to their
relative affinities for the lac-repressor protein. In this
experiment, selection is accomplished by coating a beaker
with lac-repressor molecules followed by subsequent
washing, so that only the strongly bound sequences re-
main. Mutation and amplification are then accomplished
by multiple stages of polymerase chain reaction [5].
While the experiment of Ref. [4] easily accomplished
the goal of finding the best binding sequence starting
from a pool of random sequences in a few generations,
the shortness of the binding sequence [20 base pairs (bp)]
makes it difficult to explore the interesting dynamics of
the competitive evolution process. In our study we con-
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can be examined. An example of such a system might be
the histone-octamer, which is known to bind DNA se-
quences of 147 bp [6].

We consider a pool of N DNA sequences of length L.
Each sequence ~SS � �b1; b2; . . . ; bL� of nucleotides bi is
subject to independent single-nucleotide mutations at a
rate �0 � 1 per nucleotide per generation. Selection is
accomplished through protein-DNA binding. Let the
binding energy of a sequence ~SS to the protein be E~SS and
let the fraction of such sequences in the pool be n~SS .
Assuming thermodynamic equilibrium for the binding
process, the selection function is simply the binding
probability, given by the Fermi function [7] P�E~SS; �� �
1=�1� exp�E~SS ����, where � is the chemical potential
and all energies are expressed in units of kBT. Here �
serves as a (soft) selection threshold. and is determined by
the fraction � of DNA sequences that remain bound to the
proteins after selection, i.e.,

P
~SS P�E~SS; �� n~SS � �. It can

be controlled by either the number of available proteins
or, as in the experiment [4], by the washing strength. The
fraction � can be varied from � & 1 (weak competition)
to � * 0 (strong competition). We define the evolution
process iteratively whereby in each round, N daughter
sequences are chosen from the existing pool according to
P�E~SS; ��, and then point mutation are introduced with
rate �0 to generate the new sequence pool.

Finally we need to specify the binding energy E~SS . We
assume that each nucleotide taking part in the binding
contributes independently, and adopt a ‘‘two-state’’ model
[7] which assigns an energy penalty � (of the order of a
few kBT’s) for each nucleotide which does not match the
one the protein prefers. This form of binding energy has
been shown to work reasonably well for specific systems
[8] and has been argued to hold for a wide class of
regulatory proteins [9,10]. Given this energy model, a
DNA sequence with r mismatches has a binding proba-
bility P�r; r0� � 1=�1� e��r�r0��, where r0 	 �=� is the
selection threshold in the ‘‘mismatch space’’ r [11].

The above evolution model is easily implemented on a
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only the selection strength through the choice of the
selection stringency �. A typical simulation result
for strong selection (� � 0:1) is shown as the space-
time plot of the mismatch distribution n�r; t� 	P

~SS n ~SS ��E~SS � r�� in Fig. 1. We see that the distribution
quickly forms a shape-preserving pulse (see the inset of
Fig. 1), which moves, decelerates, and eventually reaches
equilibrium in the neighborhood of the optimal sequence
(at r � 0). Basically, the selection eliminates weak bind-
ers in the population to improve the average binding
energy, hence the selection threshold r0 is decreased in
the next round, while the change of r0 further selects
sequences with better binding energies. Along with
new variety generated by mutation, a propagating pulse
results.

We next investigate the dynamical behavior of the
above evolution model analytically using a mean-field
description. It will be convenient to describe the dynam-
ics in the mismatch space r. Let us first consider the
contribution from point mutation. For a sequence of
length L, ‘‘alphabet size’’ A (A � 4 for nucleotides)
and r mismatches, there are L�A� 1� ways to mutate to
a new sequence via a single point mutation. Among them,
there are �L� r��A� 1� ways to increase r by one, and r
ways to reduce r by one. Hence, a standard master equa-
tion can be written to describe the mutational dynamics
of the distribution n�r; t� in the mean-field limit N � 1
[11–13]. The effect of the selection/amplification process
can be phenomenologically modeled by an additive term
proportional to ��1P�r; r0� for weak selection. Further
taking the continuum limit in r (valid in the limit of
large L and smooth population distribution), we arrive at
the following mean-field description for n�r; t� [11]:

@tn � @r�@r�D�r� n�� v�r�n� � U�r; n�n�r; t� (1)

U�r; n� � ���1P�r; r0�t��� 1�=�; (2)

The first two terms on the right-hand side of (1) result
from the (conservative) mutational processes, with
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FIG. 1. The space-time trajectory of the mismatch distribu-
tion n�r; t� according to the competitive evolution model with
� � 0:1. The inset shows the distribution n�r; t� at generations
t � 10; 40; 70; 100, after the initial transient period and before
the distribution reaches equilibrium at r � 0. These distribu-
tions overlap upon shift by their respective threshold r0�t�,
indicating the shape invariance of the pulse.
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being the ‘‘diffusion coefficient’’ and ‘‘drift velocity,’’
respectively [11], � 	 �0L. The r dependences of v and
D reflect the different phase space volume for the differ-
ent mismatches. For example, the form of v�r� ensures
that the distribution approaches the maximum entropy
point with r � ��A� 1�=A�L mismatches by mutation
alone. The third term in Eq. (1) represents the effect of the
selection/amplification, controlled by the growth func-
tion U defined in Eq. (2). [The factor ��O�1� denotes
generation time.] Competition is explicitly manifested in
the n dependence of the growth function U, via the
threshold r0�t� which is determined from the condition
� �

R
drP�r; r0�t��n�r; t�. In Eq. (2), an overall shift in U

by the constant �1 has been included to ensure that the
population size N is conserved after selection/amplifica-
tion, in accordance with the evolution process. This shift
produces the desired competitive effect that individuals
which bind better than the threshold r0�t� are reproduced
and those not meeting the threshold decay away. In the
actual analysis, we will approximate the Fermi function
P�r; r0� by a step function �r0 � r�, which turns out not
to affect the qualitative behavior.

We will see that the simplicity of the continuum mean-
field equation provides an analytic understanding of ge-
neric features of the evolutionary dynamics, including
the existence of the decelerating, shape-preserving popu-
lation pulse; it also provides an analytical estimate of the
smallness of the finite-N correction. However that quan-
titative differences do exist between our simplified de-
scription and the breeding schemes employed in the
simulations and experiments, due to the phenomenolog-
ical nature of simplified description, and the continuum
approximations used in both the mismatch space and
time. (A quantitatively more accurate approach has re-
cently been developed by Kloster and Tang [14].)

We start with the simplest case of infinite sequence
length (while keeping � a finite constant), yielding con-
stant coefficients D�r� � D and v � �. Making the an-
satz in Eq. (1) that the distribution n�r; t� � n�y�r; t��
where y 	 r� r0�t� and r0�t� � �ct for some constant
speed c, we obtain the ODE

Dn00�y� � ��c� ��n�y��0 � u�y�n�y� � 0; (4)

where u�y� 	 ���1��y� � 1�=�. A physically allowed
solution of Eq. (4) exists for every c � c0 � �, where

c0 	
���������������������������������
4D���1 � 1�=�

q
:

In fact, the smallest possible speed cmin 	 c0 � � is se-
lected by the dynamics given a reasonably compact initial
distribution. Here, velocity selection follows the familiar
marginal stability mechanism [3]: The selected solution
088103-2
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FIG. 2. (a) Evolution of the mean mismatch r�t� for � � 0:5.
The equilibrium distribution is used as the initial condition
to mitigate transient effects. The solid line is a single-
exponential fit using the theoretical value of # � 4

3�0 �
0:0133. (b) Equilibrium positions as a function of selection
pressure ��1 � 1. The line is the theoretical estimate rEQ �
��� c0�=#, using a generation time � � 2:77 (obtained by
calibrating c0 from theory with that from simulation).
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n��y� (with the velocity cmin) is the one that decays most
sharply at the pulse front (i.e., the r < r0 end) among all
the allowed solutions. Thus, as the front of the distribu-
tion broadens from the initial condition, it first reaches the
asymptotic decay of n�. From then on, the distribution
stops broadening and moves with the speed cmin. Standard
arguments show that this is equivalent to the condition
that the front be marginally stable in the frame of refer-
ence moving with cmin. Note that as c0 /

����
D

p
/

���
�

p
,

cmin < 0 when the mutation rate � is sufficiently large,
indicating the worsening of the overall affinity of the
sequences due to accumulation of deleterious mutations
despite the presence of selection. These results apply
also to the more general Fermi function, as it is
only the asymptotic behavior of the growth term [i.e.,
U�r � r0�] that governs velocity selection.

In evolutionary dynamics, the population size N often
plays a very important role [12,13]. To see how N enters,
we note that the mean-field Eq. (1) has an inconsistency in
that at the very front of the moving pulse, arbitrarily
small n gets the benefit of exponential amplification. But
in reality, the number of individuals is discrete so that n
should always be greater than 1=N. To deal with this
problem, a cutoff procedure was proposed within the
mean-field framework [15,16]. Here we employ this pro-
cedure to estimate the effect of a finite population on
the evolutionary velocity [17]. Specifically, we modify
the selection/amplification term u�y� in Eq. (4) to
u�y��n� N�1� (for y < 0). A direct extension of the
approach in Ref. [16] leads to �c0=c0 �

"2

2 = ln
2N for the

fractional change in c0, which has the same scaling form
as that for the Fisher equation [16]. To test this result, we
ran simulations (with a modified mutational scheme to
achieve a constant drift) to measure the propagating
speed of the pulse for different population sizes N.
Our finding of �c=c � 0:06 between N � 5
 103 and
5
 108 is in line with the expectation and indicates that
under typical experimental conditions, the fluctuation
effect due to finite population is insignificant.

We next examine the more realistic situation of finite
sequence length L. The important new effect is due to the
r dependence in the drift velocity v�r� [see Eq. (3)],
which, as the population approaches towards r � 0, in-
creasingly hinders its advance. This can already be appre-
ciated if we assume a quasi-steady-state dynamics and
replace � in the formula for cmin with v�r� � �� #r
[where # 	 4

3�0 according to (3)]: We find a stable sta-
tionary position, rEQ � ��� c0�=# where cmin � 0. Here
we identify this position naturally with the mean of the
population rEQ 	

R
rnEQ�r�dr.

To proceed with a more rigorous analysis, we neglect
the r dependence inD which has only a small quantitative
effect. Also, we assume that the equilibrium position
rEQ � 1 so that the boundary condition at r � 0 can be
safely ignored.

Returning to the mean-field equation (1), we use the
same moving-pulse ansatz as before except that we no
088103-3
longer fix a linear time dependence to the threshold r0�t�.
This ansatz produces a linear ODE for r0�t�:

#r0�t� � _rr0�t� � #rEQ0 ; (5)

where rEQ0 is the equilibrium threshold, so that a static
distribution can be achieved in the moving frame. The
population mean r follows exactly the same motion [in
fact, r�t� � r0�t� except when selection is very weak], i.e.,
a single exponential with time constant # (which depends
only on the point mutation rate �0). This is a generic result
independent of the details of the fitness function, as long
as a pulse solution exists for Eq. (1). The decay constant #
obtained from simulation of the discrete model is in
quantitative agreement with the expectation ( 43�0) for
weak selection (1 > � * 0:25); an example is shown in
Fig. 2(a). In fact, the same qualitative result (i.e., the
existence of a shape-preserving pulse) holds for strong
selection as shown already in Fig. 1 where � � 0:1.

The shape of the pulse, i.e., the equilibrium distribution
nEQ, is governed by the same ODE as Eq. (4), except that
the constant velocity c is replaced by �#�y� rEQ0 �. The
resulting equation again has a continuum of physically
allowed solutions, each having a different shape and
corresponding to a different equilibrium position rEQ0
(hence different rEQ). Here we have an interesting gen-
eralization of velocity selection to the selection instead
from a continuum of decelerating pulses. Again, starting
from a compact initial distribution, the dynamics selects
the solution [18] whose front (y < 0) decays most rapidly
(in this case a Gaussian falloff), whereas the other solu-
tions have a power-law front.

The rEQ extracted from the selected solution agrees
well with its heuristic approximation of ��� c0�=# when
# � 1; see Fig. 2(b). The theory is quantitatively accurate
[19] when the selection is not too strong (e.g., ��1 < 2:5).
For very strong selection, the equilibrium threshold
position rEQ0 approaches r � 0 and the boundary condition
there needs to be taken into account. When c0 and # are
expressed in terms of original parameters, rEQ � ���
c0�=# suggests that for a population with sequence length
088103-3
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L � 1, the population pulse could stall at rEQ � 1. In
order for the population to reach the optimal at r � 0, we
need to increase the selection strength (i.e., lowering �)
or decrease the mutation rate so that ��1 * 1� �0�L=2,
to overcome the bigger entropic barrier associated with
longer sequences.

As there have been extensive studies of evolution on
various landscapes in the context of population genetics
[12,13,20], it is worth comparing the dynamical behavior
of competitive evolution with that of more common evo-
lutionary models. The traditional study of evolution fo-
cuses on fixed fitness landscapes, where every genotype
(e.g., sequence ~SS) has a predetermined absolute fitness
value (i.e., the reproductive rate of the sequence ~SS).
Competitive evolution is different in that it is subject to
a dynamic fitness landscape. That is, the fitness is mea-
sured relative to a dynamic selection threshold and
progress towards the best binding sequence occurs via
competition among the currently existing genotypes—
being better is all-important, not being best. This aspect
of competitive evolution leads to qualitatively different
dynamical behavior. For comparison, we can consider the
simplest and most widely studied fixed landscape, i.e., the
smooth ’’Mt. Fuji’’ landscape [12,13,20,21], where each
nucleotide contributes independently and additively to the
fitness of the sequence, thus forming a landscape on
which fitness rises steadily toward a single peak. For
infinite sequence length, the mean-field theory fails in
that it produces an unphysical, runaway solution [15] due
to the unlimited growth rate of n at the high fitness states
[15,21,22], and a finite population has a traveling speed
that is essentially proportional to population size [22]. For
finite sequence length, the finite population dynamics is
orders-of-magnitude slower in reaching equilibrium than
the (now nondivergent) mean-field prediction [22]. In
contrast, finite population effects merely cause a small
correction for the competitive evolutionary process.

To summarize, we investigated the dynamics of com-
petitive evolution in the context of molecular evolution
experiments. The major result concerns the existence and
properties of a shape-invariant population pulse which
propagates towards an eventual equilibrium configura-
tion. Analytical results on the motion of the pulse ob-
tained from the mean-field equation are in good
agreement with simulations. Also, corrections due to
finite population size are shown to be insignificant. An
interesting aspect of our findings is the convergence of the
evolution process to a solution far from optimal (i.e.,
rEQ � 1), if the selection strength is not sufficiently
strong or mutation rate not sufficiently low. In general,
competitive evolution is rather different from the usual
picture of climbing a fixed fitness landscape. This ap-
proach may be applicable more generally, e.g., to natural
evolution in cases where competition for scarce resources
is the primary driving force, as an organism only needs to
be more efficient than its competitors to win the battle for
evolutionary survival.
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