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Effect of four-spin cyclic exchange on magnetism is studied in the two-leg S � 1=2 ladder. We
develop an exact spin-chirality duality transformation, under which the system is self-dual when the
four-spin exchange J4 is half of the two-spin exchange. Using the density-matrix renormalization-group
method and the duality relation, we find that the four-spin exchange makes the vector-chirality
correlation dominant. A ‘‘chirality short-range resonating-valence-bond’’ phase is identified for the
first time at large J4.
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Recently, it has been realized that the two-leg S � 1=2
ladder compound LaxCa14�xCu24O41 [1–4] and two-
dimensional (2D) antiferromagnet La2CuO4 [5,6] have a
certain strength of four-spin cyclic exchange interactions.
Theoretically, four-spin cyclic exchange emerges in the
strong-coupling expansion of the one-band Hubbard [7]
and d-p [8] models as the leading correction to the
nearest-neighbor two-spin exchange. Cyclic exchanges
were also found to be large in magnetism of 2D quantum
solids, e.g., solid 3He films [9] and Wigner crystals [10].
The effect of four-spin cyclic exchange on magnetism is,
however, hardly understood, since it has frustration by
itself: The question of what type of magnetic ordering
tends to be realized by the four-spin exchange is still
unsettled. For example, in the context of magnetism of
solid 3He films, it was argued that the four-spin exchange
on the triangular lattice can induce scalar chirality [11],
though finite-size system analysis could not find evidence
for such ordering, instead showing spin-liquid ground
states [12].

To clarify magnetism induced by the four-spin cyclic
exchange, we consider the spin ladder. Spin ladder anti-
ferromagnets have been attracting extensive interest
because they have a spin gap, a short-range resonating-
valence-bond (RVB) ground state, and superconductivity
upon doping [13]. On the two-leg S � 1=2 ladder, it was
shown numerically that the spin gap decreases rapidly
with increasing the four-spin cyclic exchange J4 [1] and
vanishes at a critical point, J4=J ’ 0:3, where J is the two-
spin exchange [14,15]. The nature of the new phase for
large J4 was not established.

In this Letter, we show that the four-spin exchange in
the two-leg S � 1=2 ladder has a tendency to induce a
vector-chirality correlation. First, we describe an exact
duality transformation between the Néel-spin operator
�s1;l � s2;l�=2 and the vector-chirality one s1;l � s2;l on
the rungs, where s
;l is the spin operator at the site on the
leg 
 � 1; 2 and the rung l. The system is self-dual under
this transformation at J4=J � 1=2, where the Néel spin
0031-9007=03=90(8)=087204(4)$20.00 
and the chirality interchange their roles: The former
gives the most dominant correlation for small J4 while
the latter does for large J4. Using the density-matrix
renormalization-group (DMRG) method [16] and the
spin-chirality duality, we studied the ground-state
phase diagram of the ladder for the whole region of 0 �
J4 � 1. We find the spin short-range RVB phase, an
intermediate phase with a very small spin gap, and a
novel chirality short-range RVB phase. Our findings of
exotic magnetic states with dominant vector-chirality
correlation at large J4 suggest that the four-spin exchange
can induce exotic electronic states in doped systems such
as high-Tc superconductors, whereas only two-spin ex-
changes have been taken into account in t-J models in
searching the mechanism.

Let us consider the Hamiltonian defined as

H �
X
l

fJrungs1;l 
 s2;l

� Jleg�s1;l 
 s1;l�1 � s2;l 
 s2;l�1� � J4Klg; (1)

where Jrung (Jleg) denotes the two-spin exchange constant
on rungs (legs) and Kl the four-spin cyclic exchange on a
plaquette f�1; l�; �2; l�; �2; l� 1�; �1; l� 1�g,

Kl � s1;l 
 s2;l � s1;l�1 
 s2;l�1 � s1;l 
 s1;l�1

� s2;l 
 s2;l�1 � s1;l 
 s2;l�1 � s2;l 
 s1;l�1

� 4�s1;l 
 s2;l��s1;l�1 
 s2;l�1�

� 4�s1;l 
 s1;l�1��s2;l 
 s2;l�1�

� 4�s1;l 
 s2;l�1��s2;l 
 s1;l�1�: (2)

All the coupling constants are assumed to be positive,
Jrung, Jleg, J4 > 0. It is instructive to rewrite the
Hamiltonian (1) as
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H � �Jrung � 2J4�
X
l

s1;l 
 s2;l � �Jleg � J4�
X
l

X

�1;2

s
;l 
 s
;l�1 � J4
X
l

�s1;l 
 s2;l�1 � s1;l�1 
 s2;l�

� 4J4
X
l

�s1;l 
 s2;l��s1;l�1 
 s2;l�1� � 4J4
X
l

�s1;l � s2;l� 
 �s1;l�1 � s2;l�1�: (3)
An interesting contribution of the cyclic exchange
appears in the last term, which introduces a coupling
between vector chiralities on nearest-neighbor rungs.
This term tends to induce nonzero vector chiralities
on every rung arranged in an antiparallel pattern.
Hence, one can naively expect that for large J4 the vector
chirality becomes an important degree of freedom
although the frustration between the various terms in
Eq. (3) complicates the situation. We will show later that
the vector-chirality correlation indeed becomes dominant
for large J4.

To elucidate the relation between the spin and chirality
degrees of freedom, we construct a duality transforma-
tion between them. Let us begin with the commutation
relations between the total rung spins Wl  s1;l � s2;l and
the vector chirality Vl  2s1;l � s2;l given by

�W�
l ;W

�
l0 � � i����W�

l �l;l0 ; �V�
l ; V

�
l0 � � i����W�

l �l;l0 ;

�W�
l ; V

�
l0 � � i����V�

l �l;l0 :

We note that the commutation relations are identical to
those which hold between the angular momentum and the
Runge-Lenz vector of an electron system in a hydrogen
atom. We can disentangle the algebra by introducing new
operators defined by
087204-2
Sl  1
2�Wl � Vl� �

1
2�s1;l � s2;l� � s1;l � s2;l; (4)

Tl 
1
2�Wl � Vl� �

1
2�s1;l � s2;l� � s1;l � s2;l: (5)

These operators obey the commutation relations,

�S�l ; S
�
l0 � � i����S�l �l;l0 ; �T�l ; T

�
l0 � � i����T�l �l;l0 ;

�S�l ; T
�
l0 � � 0;

and satisfy S2
l � T2

l � 3=4. Thus, the new operators Sl
and Tl are S � 1=2 pseudospin operators decoupling each
other. It is interesting to note that the original spins s1;l
and s2;l may be expressed in terms of Sl and Tl simply by
interchanging their roles in Eqs. (4) and (5), i.e., s1;l �
1
2 �Sl � Tl� � Sl � Tl and s2;l � 1

2 �Sl � Tl� � Sl � Tl.
We, hence, call this a ‘‘duality’’ transformation. The
relations between the original and new spin operators
are summarized as

s1;l � s2;l � Sl � Tl; s1;l � s2;l � 2Sl � Tl;

� 2s1;l � s2;l � Sl � Tl; s1;l 
 s2;l � Sl 
 Tl:

The transformation thereby exchanges the Néel spin and
the vector chirality on the same rung.

In terms of the new spin operators, the Hamiltonian (3)
is rewritten as
~HH � �Jrung � 2J4�
X
l

Sl 
 Tl �

�
Jleg
2

� 2J4

�X
l

�Sl 
 Sl�1 � Tl 
 Tl�1� �
Jleg
2

X
l

�Sl 
 Tl�1 � Tl 
 Sl�1�

� 4J4
X
l

�Sl 
 Tl��Sl�1 
 Tl�1� � 2Jleg
X
l

�Sl � Tl� 
 �Sl�1 � Tl�1�: (6)
Thus, the duality transformation leaves the form of
the Hamiltonian unchanged and only affects the coeffi-
cients of the second, third, and fifth terms. An interest-
ing observation here is that in the case of J4 � Jleg=2 the
original Hamiltonian H and its dual ~HH are equiva-
lent including the coefficients. Hence, the Néel spin
�s1;l � s2;l�=2 and the vector chirality s1;l � s2;l show
identical behavior on this ‘‘self-dual’’ line.

To clarify the consequence of the spin-chirality duality
around J4 � Jleg=2 and the nature of ground states, we
study the low-energy properties of the Hamiltonian (3)
numerically. For simplicity, we focus on the case of
Jrung � Jleg � J and investigate the ground-state phase
diagram on the J4=J line hereafter. Using the DMRG
method [16], we have calculated the energy gap of spin
excitations

�0M�L� � E0�L;M� � E0�L; 0�; �M � 1; 2�; (7)

where E0�L;M� is the lowest energy in the subspace of
sztotal �
P
l�s

z
1;l � sz2;l� � M in a finite ladder of L rungs.

For the best performance of the DMRG method, an open
boundary condition was imposed.We have also calculated
the ground-state spin correlation functions

Cs
0�r� �

1
4h�s

z
1;l � sz2;l��s

z
1;l0 � sz2;l0 �i; (8)

Cs
��r� �

1
4h�s

z
1;l � sz2;l��s

z
1;l0 � sz2;l0 �i; (9)

and the vector-chirality correlation function

C �r� � h�s1;l � s2;l�z�s1;l0 � s2;l0 �zi; (10)

with l � l0 � r=2 and l0 � l0 � r=2 [17]. The index l0
represents the center position of the open ladder, i.e.,
l0 � L=2 for even r and l0 � �L� 1�=2 for odd r. We
have employed the finite-system method with improved
algorithm [16] and kept up to m � 500 states per block.
The numerical errors due to the truncation are estimated
from the difference between the data of different m.
The system size is up to 2� 100 sites.
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First, we discuss the parameter region J4=J < 1. It is
known that for J4 � 0 the system belongs to a spin-liquid
phase, in which the ground state is well described by the
RVB state. The spin gap is open in this phase. We show in
Fig. 1 our numerical results for the spin gaps �0M�L�. The
data are extrapolated by fitting them to a polynomial
form, �0M�L� � �0M�1� � a=L� b=L2. For J4=J &

0:3, the spin gaps decrease smoothly for both M as L
increases, and consequently, the extrapolation works
pretty well [see Figs. 1 and 1(b)]. The extrapolated
values �0M�1� are shown in Fig. 2 with J � 1 in the
region J4=J < 1. The spin gaps decrease smoothly as J4
increases from 0 and vanish around J4=J ’ 0:3, suggest-
ing a phase transition accompanied by vanishing of the
spin gap at J4=J � �J4=J�c1 ’ 0:3. Unfortunately, accu-
rate estimation of the critical value �J4=J�c1 is quite
difficult due to the very slow vanishing of the spin gaps
around the transition point. When J4=J is larger than
0.3, �01�L� shows bumpy behavior as seen in Fig. 1(c).
This may be attributed to effects of open bounda-
ries. The value of �01�L� becomes exactly 0 within nu-
merical accuracy for several L, which suggests a spin-
triplet ground state. On the other hand, the spin gap
�02�L� exhibits a rather smooth L dependence even for
J4=J � 0:3. The extrapolated gaps �02�1� are very small,
less than 0.02, but seem to be finite for this region. Very
recently, Läuchli et al. studied independently the same
model but with a different boundary condition and
showed that the system for this parameter region belongs
to a phase with a very small gap exhibiting the transla-
tional symmetry breaking [18]. The work of Ref. [19]
also pointed toward this result. Our results are thus con-
sistent with theirs although the number and type of ex-
citations in the finite systems might differ from each
other because of the different boundary conditions.
Further studies, especially by analytic methods, are de-
sirable for clarifying the nature of excitations and why
the spin gap is so small in the entire region of the phase.
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FIG. 1. System-size dependence of the spin gaps for (a)
�J; J4� � �1; 0:1�, (b) (1, 0.3), (c) (1, 0.5), and (d) (0,1). The
gaps �01�L� and �02�L� are plotted by circles and squares,
respectively. The numerical errors of the DMRG calculation are
smaller than the symbols.
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Figure 3 shows the spin correlations Cs
0�r� and Cs

��r�,
and the vector-chirality correlation C �r� for several
typical sets of parameters. For J4=J < �J4=J�c1 ’ 0:3, all
the correlations decay exponentially, which is consis-
tent with a finite spin gap. The Néel-spin correlation
Cs
��r� is the strongest among the calculated correlation

functions [Fig. 3(a)], as in the usual antiferromagnetic
(AF) ladder. For J4=J > �J4=J�c1, on the other hand, the
correlation functions decay very slowly reflecting the
small spin gap [20]. We find that the Néel-spin correla-
tion Cs

��r�, which is dominant for small J4, keeps reduc-
ing as J4 increases while the vector-chirality correlation
C �r� keeps growing and becomes dominant for large J4.
They interchange with each other at the self-dual point
J4=J � 0:5; we can see their perfect coincidence in
Fig. 3(c). These results strongly suggest that the system
exhibits symmetric behaviors with respect to the self-
dual point J4=J � 0:5 with exchanging the roles of the
Néel-spin and the vector-chirality correlations. We also
note that the dimer operator ~ss1;l 
 ~ss1;l�1 � ~ss2;l 
 ~ss2;l�1

and the scalar-chirality operator �~ss1;l � ~ss2;l� 
 �~ss1;l�1 �
~ss2;l�1� � �~ss1;l � ~ss2;l� 
 �~ss1;l�1 � ~ss2;l�1� are related to each
other by the duality transformation, and, consequently,
their correlation functions must interchange exactly at
J4=J � 0:5, which is consistent with numerical results
in Ref. [18].

Next, we consider the parameter region J4=J > 1.
Hereafter, we set J4 � 1. It can be seen in Fig. 2 that
the spin gaps open for J4=J > �J4=J�c2 ’ 1=0:4 � 2:5.
Again, accurate estimation of �J4=J�c2 is quite difficult
due to the very slow opening of the gaps.We also note that
for large J4=J the spin gap �01 exhibits a smooth L
dependence and does not become 0 for finite L [see
Fig. 1(d)], suggesting the absence of the triplet ground
state in the finite systems. To elucidate the nature of the
system in this large J4=J region, we consider the case
J4=J � 1 (J4 � 1 and J � 0) using the spin-chirality
duality transformation. In this case, the transformed
Hamiltonian (6) is expressed as
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FIG. 2. Extrapolated spin gaps in the limit L! 1 as func-
tions of J4 (left), J (center), and ~JJ rr (right); see text. The circles
and squares represent �01�1� and �02�1�, respectively. Inset:
Enlarged figure for 0:3 � J4=J � 2. The error bars represent
those from the extrapolation procedure.
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FIG. 3. Correlation functions jCs
��r�j (circles), jCs

0�r�j
(squares), and jC �r�j (triangles) as functions of distance for
J � 1 and (a) J4 � 0:1, (b) J4 � 0:3, (c) J4 � 0:5, and (d) J4 �
1. The system size is L � 80. The error bars represent the
numerical errors of the DMRG calculation.
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~HH J4 �
~JJrung

X
l

Sl 
 Tl � ~JJ leg
X
l

�Sl 
 Sl�1 � Tl 
 Tl�1�

� ~JJ rr
X
l

�Sl 
 Tl��Sl�1 
 Tl�1�; (11)

with ~JJ rung � ~JJ leg � 2 and ~JJ rr � 4. Notice here that, if one
sets ~JJrr � 0 in Eq. (11), the system is equivalent to the
usual two-leg AF ladder, which has the short-range
RVB ground state consisting of the spins Sl and Tl. In
Fig. 2, we show the ~JJ rr dependence of the extrapolated
spin gaps �0M�1� for 0 � ~JJ rr � 4. It is clear that the spin
gaps remain finite for the entire region of 0 � ~JJ rr � 4 and
are smoothly connected to the spin gaps at ~JJ rr � 4; there
is no phase transition between ~JJ rr � 0 and ~JJ rr � 4. We
thus conclude that the Hamiltonian (11) with ~JJ rr � 4, and
accordingly, the original ladder (3) in the limit J4=J � 1,
belong to the same RVB phase as the AF ladder of the
spins Sl and Tl with ~JJ rr � 0. Small size of the spin gap at
J4=J � 1 can be understood from the fact that the system
is close to the quantum critical point between the short-
range RVB and intermediate phases. Note that the domi-
nant correlation function in this RVB phase is that of the
Néel spin �Sl � Tl�=2 and, hence, in terms of the original
spins, the correlation of the vector chirality s1;l � s2;l is
the strongest. We therefore term this novel phase the
chirality short-range RVB phase.

In summary, using the spin-chirality duality transfor-
mation, which is developed in this Letter, as well as the
DMRG method, we have found that the four-spin cyclic
exchange makes the vector-chirality correlation domi-
nant. The chirality RVB phase appears for large J4. It
has been found that the system exhibits symmetric be-
havior with respect to the self-dual point J4=J � 1=2
by interchanging the Néel spin and the vector chirality.
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We remark that the duality transformation is applic-
able to any spin Hamiltonian, since it is based only on
the spin commutation relation. This transformation
should be useful in studying various topics. One example
is the spin-orbital model around the SU(4) symmetric
point [21]. We have found in the two-leg ladder with
extended four-spin exchange that the self-dual line con-
nects with the SU(4)-symmetric point [22]. Another ex-
ample is a magnetization plateau induced by the four-spin
exchange [23]. Since the total spin

P

;l s
;l is invariant

under the dual transformation, the duality relation holds
even in a magnetic field. The effect of four-spin exchange
on hole-doped systems is also to be considered. It would
be interesting to investigate the relation to possible hidden
orders proposed for high-Tc superconductors, e.g., the
staggered currents.
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