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Andreev Level Qubit
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We investigate the dynamics of a two-level Andreev bound state system in a transmissive quantum
point contact embedded in an rf SQUID. Coherent coupling of the Andreev levels to the circulating
supercurrent allows manipulation and readout of the level states. The two-level Hamiltonian for the
Andreev levels is derived, and the effect of interaction with the quantum fluctuations of the induced flux
is studied. We also consider an inductive coupling of qubits and discuss the relevant SQUID parameters
for qubit operation and readout.
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FIG. 1. Left: Sketch of the Andreev level qubit — a nonhys-
teretic rf SQUID with a quantum point contact (QPC), and the
equivalent circuit containing the Josephson junction and LC
oscillator. Right: The energy spectrum of the QPC with finite
point contact (QPC) embedded in a low-inductance non-
hysteretic SQUID had first been investigated by Koops

reflectivity (R � 0:04) (solid line) appears as a hybridization of
the current states (R � 0) (dashed line).
Recent observations of quantum coherence in super-
conducting circuits [1–5] have made superconducting
qubits a realistic possibility. Superconducting qubits em-
ploy the phenomenon of macroscopic quantum coherence
(MQC) [6], and operate with coherent superpositions of
quantum states of a macroscopic object — a supercon-
ducting condensate. An elementary MQC circuit (persis-
tent current or flux qubit) consists of a hysteretic SQUID
with a small capacitance Josephson tunnel junction and
operates with the two degenerate current states corre-
sponding to the clockwise and counterclockwise circulat-
ing persistent currents. The coupling of the current states
is due to quantum fluctuations of the electric charge on
the junction capacitor. Further modifications of the flux
qubits involve implementation of multiple junction cir-
cuits, which allows one to employ one of the dynamic
variables for qubit operation, and another one for qubit
readout [3,4,7].

In this Letter, we consider a new type of superconduct-
ing qubit where the switching between the two persistent
current states in a SQUID is achieved by employing a true
microscopic system formed by the two-level Andreev
bound states in a superconducting atomic-size quantum
point contact embedded in the SQUID (see Fig. 1). In this
Andreev level qubit, the quantum information is stored in
the microscopic quantum system, the Andreev bound
states, similar to nonsuperconducting solid state qubits
such as localized spins on impurities [8] or quantum dots
[9]. Readout of the Andreev level qubit is achieved by
monitoring the macroscopic persistent current or the
induced flux in the SQUID, similar to the MQC qubits
[2–4,10]. In this Letter, we present for a first time a
quantitative theory for the Andreev level qubit including
interaction of the Andreev levels with quantum electro-
magnetic fluctuations in the SQUID, and derive the two-
level qubit Hamiltonian.

The Josephson effect in a single atomic-size quantum
0031-9007=03=90(8)=087003(4)$20.00 
et al. [11]; in this experiment, the averaged current-phase
relation in the ground state was measured by performing a
classical measurement of the induced flux. The results of
this experiment, and also of other experiments on atomic-
size QPCs where the critical current [12] and current-
voltage characteristics [13,14] have been investigated, are
consistent with a theoretical picture in which the Andreev
bound levels play the central role in the Josephson current
transport [15].

The Andreev bound levels are formed in a QPC due to
Andreev reflections by the discontinuity of the super-
conducting phase at the contact in the presence of the
applied current. The Andreev level wave functions are
localized in the vicinity of the contact over a distance of
the order of the superconducting coherence length, and
the number of Andreev bound levels is limited to one pair
of levels per conducting electronic mode. Thus, a super-
conducting QPC may be viewed as a kind of quantum dot
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which contains a finite number of localized quantum
states. In highly transmissive QPCs, the Andreev levels
lie deep within the superconducting gap and are well
decoupled from the continuum quasiparticle states in
the electrodes.

Coherent coupling of the Andreev levels to the super-
current flowing through the contact makes the Andreev
levels accessible for manipulations and for measurements.
Ways of manipulating the Andreev levels by means of
applying resonant rf flux pulses and by ramping the
external flux have been extensively studied earlier [16–
18]. In this Letter, we focus on the qubit aspect, which has
received much less attention: the interaction of the
Andreev levels with an external electric circuit. During
time evolution of the Andreev levels, the current through
the QPC changes; i.e., the QPC operates as a quantum
switch which controls the direction of the circulating
current in the SQUID. To maintain the current switching,
the intrinsic dynamics of the current in the SQUID must
be sufficiently fast. Moreover, fidelity of readout of the
Andreev level state by performing quantum measurement
of the circulating current, or of the corresponding in-
duced flux, requires the qubit evolution to be slow on a
time scale of intrinsic electromagnetic fluctuations. Then
the current (and induced flux) averaged over electromag-
netic fluctuations will adiabatically follow the qubit evo-
lution. Furthermore, since the current in the single-mode
QPC undergoes strong quantum fluctuations, the induced
flux and, hence, the superconducting phase difference,
are also fluctuating quantities. Therefore a consistent
theory of the Andreev level qubit should include a full
quantum mechanical treatment of the coupled Andreev
levels and electromagnetic fluctuations.

To derive an effective quantum Hamiltonian describ-
ing coupled Andreev levels and electromagnetic fluctua-
tions, we employ a path integral approach commonly
used in MQC theory [19]. The central problem here is
to extend the theory, originally developed for tunnel junc-
tions, to the interesting case of high transmission QPCs;
this problem is solved by using the exact boundary con-
dition in the action instead of the tunnel Hamiltonian.
Following Ref. [19], we present the evolution operator for
the system on the form

U �
Z

D�eiSosc���= �h
Z

D2 LD2 ReiSJ= �h; (1)

where the integration is performed over the superconduct-
ing phase difference ��t� and Nambu-Grassman fields
 L;R�r; t� representing electronic degrees of freedom in
the left and right electrodes, respectively. The action
Sosc��� describes an LC oscillator formed by the junction
capacitance C and the superconducting loop inductance L
(see Fig. 1), while the action SJ describes the Josephson
junction.

To derive the action for the Josephson junction, we
consider the two superconducting reservoirs coupled via
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a single-channel localized scatterer. The scatterer is rep-
resented by a normal electron scattering matrix, which
imposes the boundary condition for the quasiclassical
wave functions of the quasiparticles in the reservoirs.
The microscopic Hamiltonian for the reservoirs is con-
sidered within the mean field approximation, and in the
gauge invariant form,

H �
X

��L;R

Z
dr y

�ĥh �; ĥh �

�
p̂p2

2m
��

�
�z �	�x:

(2)

The superconducting phase in the reservoirs is fully com-
pensated by the electromagnetic potentials in order to
obey the electroneutrality equation, and it appears only in
the boundary conditions [19,20]. The Hamiltonian gen-
erates the Lagrangian, L �

P
��L;R

R
dr �i �h@t � ĥh� �.

In the boundary condition, which connects the fields
 L;R�0; t� at the contact, the energy dependence of the
scattering matrix on the scale of 	 can be neglected, so
that the same matrix describes both the electrons and
holes. Furthermore, without loss of generality, it is pos-
sible to eliminate constant scattering phases from the
boundary condition and include them in the positive
and negative momentum components of the fields
 ��r; t�. Within the quasiclassical approximation, such a
transformation will not affect the Hamiltonian in Eq. (2).
The boundary condition can then be incorporated into the
junction action SJ by means of the Lagrange field ��t�,

eiSJ= �h �
Z

D2�e�i= �h�
R
dt�L�������; (3)

where ��t� � de�i�z��t�=2 L�0; t� � �1� r� R�0; t�, and
d �

����
D

p
and r �

����
R

p
are real transmission and reflection

amplitudes, respectively. We will see later that the fer-
mionic field ��t� describes the Andreev levels.

Integration over the rapidly varying fermionic fields in
the electrodes,  ��r; t�, yields the effective action,

eiSeff ���= �h �
Z

D2�e�i= �h�
R
dt1dt2��t1�G�t1;t2���t2�; (4)

G�t1; t2� � �
D

�1� r�2
e�i�z��t1�=2g�t1 � t2�e

i�z��t2�=2

� g�t1 � t2�;

g�!� �
X
p

� �h!� ĥh��1: (5)

Equation (5) provides the required generalization of the
effective action of the tunnel theory [19] to junctions
with arbitrary transparency. In the low-frequency limit,
!
 	= �h, the Green’s function g�!� reduces to a simple
form, g�!� � �� !F=	�� �h!� 	�x� (!F is the density
of states at the Fermi level), which leads to the local-in-
time effective Lagrangian, G�t1; t2� � G�t1�#�t1 � t2�,
087003-2
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G�t� � i�h@t�
1� r
4

�h@t��z�
�

0 ze�i�=2

z�ei�=2 0

�
; (6)

with z�	�cos��=2�� irsin��=2��:
Equation (6) describes a two-level fermionic system.

Under stationary conditions, @t��0, the spectrum of the
system, �h!��Ea, Ea�	

���������������������������������������������������
cos2��=2��Rsin2��=2�

p
,

coincides with the Andreev level spectrum [15], shown
in Fig. 1. It follows from this equation that the assumed
low-frequency approximation is appropriate for transpar-
ent contacts, R
1, at �
 , where the Andreev level
energy is small, Ea
	. To derive the Hamiltonian for
the Andreev two-level system, it is convenient first to
eliminate the time derivative of the phase in Eq. (6) by
means of a unitary rotation, and then to use the relation
G�t�� i�h@t�ĤHa to obtain

ĤHa �

�
0 �ze�ir�=2

�z�eir�=2 0

�
: (7)

This equation is the first main result of the present
paper [21].

The slow dynamics in transparent contacts, R
 1, is
described by two variables, ��t� and ��t�. This is rather
different from tunnel contacts with D
 1, where the
effective action depends only on the phase difference
and basically reduces to the potential Josephson energy
[19]. This difference is easily understood if one takes into
account that the Andreev levels in tunnel junctions are
close to the gap edge, Ea 
 	, making ��t� a rapid
variable. Integration over � in Eq. (4) assuming small
D in Eq. (5) recovers the effective action of Ref. [19].

Let us now consider the current through the junction.
The statistically averaged current hIi can be expressed
through the Josephson part, UJ, of the evolution operator
in Eq. (1), hIi � 2ei�#=#�� ln hUJi. In terms of the effec-
tive action, the equation for the averaged current reduces
to the form hIi � Tr�'�ÎI�, where '� is the density matrix,
and ÎI is the current operator of the two-level Andreev
system,

ÎI �
2e
�h
dĤHa

d�
�
eI���

�h

�
0 e�ir�=2

eir�=2 0

�
; (8)

I��� � 	D sin��=2�. The current operator ÎI does not
commute with the Hamiltonian ĤHa, which is a conse-
quence of the normal electron reflection at the QPC.
Therefore the Andreev levels consist of superpositions
of the current eigenstates, unless R � 0, and, hence, the
current expectation value in the Andreev state, Ia �
�2e= �h��dEa=d�� � �e=2 �h��D	2=Ea� sin�, does not coin-
cide with the current eigenvalues, �eI= �h, which are
evaluated during the quantum measurements. Further-
more, the Andreev level current undergoes quantum fluc-
tuations with the spectral function (cf. Ref. [22]), S�!� �
I2aR tan2��=2�#�!� 2Ea�. In the SQUID geometry, these
fluctuations generate strong quantum fluctuations of the
phase.
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We now take the quantum dynamics of the supercon-
ducting phase into consideration. The quantum Hamil-
tonian of the LC oscillator associated with the action
Sosc��� in Eq. (1) has the form ĤHosc � �� �h@��2=2M�

M!2 ~��2=2, where M � �h2=8EC, ! �
����������������������
8ELEC= �h

2
p

, EC �
e2=2C, EL � � �hc=2e�2�1=L�, and ~�� is related to the in-
duced flux, ~�� � �c �h=2e� ~��.

In the practically important case of small loop induc-
tance, EJ 
 EL, the SQUID is in the nonhysteretic re-
gime, and the induced flux is small, ~�� 
 1. Introducing
the phase difference �e related to a stationary external
flux, we expand the Hamiltonian in Eq. (7) over small ~��;
then the Hamiltonian of the whole system in the current
eigenbasis takes the form,

ĤH � �	

�
cos

�e

2
�z � r sin

�e

2
�x

�
�
I��e�

2
~���z � ĤHosc:

(9)

This Hamiltonian describes a spin degree of freedom
linearly coupled to an oscillator, the steady state of the
oscillator being shifted from the origin by �I=2M!2

depending on the spin direction (direction of the current
in the junction). We are interested in the case when the
induced flux adiabatically follows the evolution of the
Andreev levels. This regime corresponds to a large oscil-
lator frequency compared to the Andreev level spacing,
�h!� 2Ea. In this case, the oscillator can be assumed to
be in the ground state, ’0����, �� � ~�� � I=2M!2,
since the probability of transitions among the oscillator
levels is small. Averaging out the ground state phase
fluctuations [23], we finally arrive at the effective
Hamiltonian describing the Andreev level qubit,

ĤHq � �	

�
cos

�e

2
�z � q0r sin

�e

2
�x

�
: (10)

The factor q0 � exp��I2=4M �h!3� is the overlap integral
between the oscillator ground state wave functions for
different current directions, ’0����. The averaged value
of the induced phase is then given by h ~��i �
�I=2M!2�Tr�'��z�, which yields the relation between
the induced flux operator and the current operator, ~̂��~�� �
�L=c�ÎI . Therefore quantum measurement of the flux on a
time scale 1=! < - < �h=2Ea will allow correct evalu-
ation of the Andreev level state.

The qubit Hamiltonian (10) is another main result of
this paper. Equation (10) is equivalent to the Hamiltonian
of noninteracting Andreev levels, Eq. (9), but with re-
duced reflectivity, ~RR � q20R. One may interpret this re-
duction as the effect of the inertia of the loop oscillator,
which makes it more difficult for the Andreev levels to
switch direction of the current. The effect becomes in-
creasingly strong in the limit of a classical oscillator with
large ’’mass.’’ This renormalization effect leads to reduc-
tion of the Andreev level energy Ea ! ~EEa, and, hence, to
the reduction of the frequency of the qubit rotation,
087003-3
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remaining the results of Ref. [16,17] essentially the same.
This might be important for practical applications, be-
cause it would allow the frequency of the qubit rotation to
be tuned by choosing circuit parameters rather than by
tuning the contact reflectivity.

The following chain of inequalities summarizes the
requirements for the Andreev level qubits,

2	
����
~RR

p

 �h!
 	� EJ 
 EL: (11)

These requirements are consistent with the typical circuit
parameters of the experimental MQC qubits [3,4]. The
critical current in the QPC is close to the maximum
supercurrent of a single mode, Ic 
 e	= �h (� 400 nA
for Nb), and the Josephson energy, EJ 
 	. Assuming
L� 0:1 nH, and C� 0:1 pF, we estimate !� 1011 s�1,
andEL= �h� 1013 s�1 � 10	Nb= �h. For these values, the q0
factor is of the order of unity, and the reflectivity of the
contact must be small, R � 0:01, which is, in principle,
accessible in the experiments with atomic-size QPC
[12,14]. However, even a slight increase of the inductance
will significantly decrease the q0 factor, and the con-
straint on the bare contact reflectivity will become less
restrictive. In summary, we estimate the upper bound for
the qubit operation frequency to be about 1010 s�1.

The qubit operation frequency must significantly ex-
ceed the relaxation and dephasing rates of the qubit.
The relaxation and dephasing mechanisms (external
flux fluctuations, radiation, etc.), which have been exten-
sively discussed for the MQC flux qubits [10], are also
relevant for the Andreev level qubit (see also Ref. [24]).
The interaction of the Andreev levels with microscopic
degrees of freedom in the contact, primarily with the
phonons, does not impose any further limitations.
Investigation of this problem has shown [25] that the
relaxation rate is very sensitive to the Andreev level
spacing: For small spacing, -�1 � ~RR2-�1

ph �	� at small
temperature, T 
 ~EEa. For ~RR < 0:01, this relaxation rate
is smaller than the qubit operation frequency by at least a
factor of 104.

We conclude with a discussion of the qubit-qubit inter-
action. Let us consider an inductive coupling as the most
relevant interaction for the flux qubits [10]. This coupling
will introduce hybridization of the loop oscillators, which
is described by inserting the inductance matrix in the
Hosc term in Eq. (9). The averaging over flux fluctuations
is conveniently performed using the oscillator normal
modes. The averaging procedure leads to the qubit
Hamiltonians in Eq. (10) with slightly different dressing
factors, and to a Hamiltonian of direct qubit-qubit inter-
action. For the two qubits, the effective interaction has the
form Hint � ��e=c �h�2�MI1I2��z1�z2, where M is the
mutual inductance. The two-qubit configuration may con-
sist, in particular, of a single QPC with two conducting
modes; in this case M � L.
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In conclusion, we have developed a quantitative theory
for the Andreev level qubit, a device consisting of a
SQUID with a quantum point contact, combining the
features of microscopic and macroscopic quantum sys-
tems. We derived the two-level Hamiltonian for the
Andreev levels and showed that it is strongly dressed by
the quantum fluctuations of the induced flux. We also
derived the effective interaction Hamiltonian for induc-
tively coupled qubits and discussed the relevant circuit
parameters for qubit operation and readout.
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