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Phase Coexistence in Driven One-Dimensional Transport
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We study a one-dimensional totally asymmetric exclusion process with random particle attachments
and detachments in the bulk. The resulting dynamics leads to unexpected stationary regimes for large
but finite systems. Such regimes are characterized by a phase coexistence of low and high density
regions separated by domain walls. We use a mean-field approach to interpret the numerical results
obtained by Monte Carlo simulations, and we predict the phase diagram of this nonconserved dynamics
in the thermodynamic limit.
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served dynamics in the bulk imposes to the TASEP by FIG. 1. TASEP scheme with bulk attachment/detachment.
Even some of the simplest driven diffusive systems in
one dimension show surprisingly rich and complex
behavior which is rather unexpected when looked at
with experience gained from equilibrium phenomena
[1]. Particularly illuminating examples are boundary-
induced phase transitions in driven one-dimensional
(1D) transport processes, such as the totally asymmetric
simple exclusion process (TASEP). The model, originally
proposed in [2], consists of particles hopping unidirec-
tionally with hard-core exclusion along a 1D lattice.
Because of conservation of the particle current in the
bulk, the rates of incoming or outgoing particles at the
boundaries drive the system to nontrivial stationary states
[3]. The resulting phase diagram shows continuous and
discontinuous transitions of the average density of par-
ticles in the limit of large system sizes. These results were
obtained first in mean-field theory and then extended
when a complete analytical solution was presented solv-
ing explicitly the recursion relations of the model or using
a matrix product ansatz technique [4].

The TASEP is one of many examples for driven sys-
tems with stationary nonequilibrium states, which cannot
be described in terms of Boltzmann weights. This has to
be contrasted with processes like the bulk adsorption/
desorption kinetics of particles on a lattice coupled to a
reservoir [‘‘Langmuir kinetics’’ (LK)], whose stationary
state is well described within standard concepts of equi-
librium statistical mechanics. Here particles adsorb at an
empty site or desorb from an occupied one with fixed
respective kinetic rates obeying detailed balance. The
bulk density profile at equilibrium is described by a
Langmuir isotherm, determined solely by the ratio of
the two kinetic rates [5], as given by the Gibbs ensemble.
Because of the presence of the particle reservoir there is
no conservation of particles and no net particle current in
the bulk. It is interesting to ask what can be expected in
coupling two processes which have genuinely different
dynamics and stationary states, like TASEP with open
boundaries and LK.

In this Letter, we relax the constraint that the con-
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allowing particle attachment and detachment. We are
interested in the limit where the kinetic rates are such
that the incoming and outgoing fluxes of particles at the
boundaries and in the bulk are comparable. This implies
that a particle, injected at the boundary or attached some-
where in the bulk, remains long enough on the lattice to
move a finite fraction of the total system size. New
phenomena are expected in the regime of competition
between TASEP and LK for a large but finite system. Of
course, the dynamics in an infinitely large system would
be completely dominated by the bulk adsorption and
desorption rates. It turns out that the presence of the
kinetic rates significantly change the picture of TASEP,
producing a completely reorganized phase diagram. We
shall show by computer simulations and mean-field argu-
ments that, in this nonconserved dynamics, one can have
phase coexistence where low and high density phases are
separated by stable discontinuities in the density profile.

The model we discuss here is directly inspired by the
unidirectional motion of many motor proteins along
cytoskeletal filaments [6]. Motors advance along the
filament while attachment and detachment of motors
between the cytoplasm and the filament occur [7].
Recently, it has been shown that such dynamics can be
relevant for modeling the filopod growth in eukaryotic
cells produced by motor proteins interacting within actin
filaments [8].

We consider a 1D lattice composed of sites i � 1; . . . ; N
(Fig. 1). The configurations are described in terms of
occupation numbers ni � 1 for a site occupied by a
particle and ni � 0 for an empty site (vacancy). The
dynamics is determined by a master equation for the
probabilities to find a particular configuration fnig. We
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FIG. 2. (a) Average density profile hnii computed by MCS
(continuous line) and average density profile ��x� computed by
numerical integration of MFA stationary state Eqs. (2) (dashed
line) in the rescaled variable x � i=N for N � 103 with 	 �
0:2, 
 � 0:6, K � 3, and different kinetics rates �D indicated
in the graph. (b) MCS average density profile for different
system sizes, same 	, 
, K as before, and �D � 0:1. The
width of the steep rise decreases with increasing system sizes
N � 10k with k � 2; 3; 4; 5 indicated in the graph. (c) MFA
average density profile for " � 10�3, same 	, 
, K as before,
and different kinetic rates �D indicated in the graph. The
horizontal dashed line for ��x� � 0:75 represents the
Langmuir isotherm for K � 3.
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apply the following dynamical rules. For each time step, a
site i is chosen at random. A particle at site i can jump to
site i� 1 if unoccupied (we fix units of time by putting
this rate equal to unity). In the bulk i � 2; . . . ; N � 1, a
particle can also leave the lattice with a site-independent
detachment rate !D or fill the site (if empty) with a rate
!A by attachment. At the boundaries, a particle can fill a
vacancy with a rate 	 at site i � 1, or a vacancy can be
formed by removing a particle from the lattice with a rate

 at site i � N. We refrain from giving explicitly the
master equation for the probabilities. Correlations in-
duced into the many-particle problem can be conven-
iently studied within an operator representation in Fock
space [9]. Then the equations of the bulk dynamics read

dni
dt

� ni�1�1�ni��ni�1�ni�1��!A�1�ni��!Dni;

(1a)

while at the boundaries one obtains

dn1=dt� 	�1�n1�� n1�1�n2� ;
dnN=dt� nN�1�1�nN��
nN :

(1b)

By taking averages [10] one observes that in order to
compute the time evolution of hni�t�i one needs the cor-
responding averages of higher order correlations. In order
to obtain an exact solution, elaborate techniques are
necessary. We restrict the discussion to Monte Carlo sim-
ulations (MCS) and a mean-field approximation (MFA)
which we shall apply below.

The system exhibits a particle-hole symmetry in the
following sense. A jump of a particle to the right corre-
sponds to a vacancy move by one step to the left.
Similarly, a particle entering the system at the left bound-
ary can be interpreted as a vacancy leaving the lattice,
and vice versa for the right boundary. Attachment and
detachment of particles in the bulk is mapped to detach-
ment and attachment of vacancies, respectively.

We are interested in large system sizes (N 
 1) and,
eventually, in the ‘‘thermodynamic limit’’ N ! 1. In
this case, the study of the competition between bulk and
boundary dynamics requires that the kinetic rates de-
crease simultaneously with the system size. More pre-
cisely, we define the ‘‘reduced’’ rates �A and �D as
�A � !AN and �D � !DN, keeping �A;�D; 	;
 fixed
as N ! 1. Note that the binding constant K � !A=!D
remains unchanged when passing to the thermodynamic
limit. Moreover, for !A � !D � 0, one arrives back at
the TASEP respecting the same particle-hole symmetry
described above.

We have performed extensive computer simulations
[11] to obtain the average density profile in the stationary
state. We illustrate typical phenomena by following a path
in parameter space along curves with fixed 	, 
, and K
while increasing �D � �A=K. Figure 2(a) shows the
density profile for three different values of the kinetic
rates. At small kinetic rates, �A;�D  	;
, the average
086601-2
density hnii in the bulk is practically constant and close to
the low-density value predicted by the TASEP, hnii � 	.
Conversely, at high kinetic rates the bulk profile is struc-
tureless and essentially determined by the well-known
ratio K=�1� K� of Langmuir equilibrium density [12]. A
new feature appears for intermediate rates, �D � 0:1,
precisely when bulk and boundary dynamics compete.
The density exhibits a nonmonotonic structure in bulk,
characterized by a region of low and high density con-
nected by a steep rise.

Figure 2(b) shows the density profile for different
system sizes. One observes a decrease of the width of
086601-2
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the transition region as the number of sites is increased.
The simulation suggests a discontinuity of the profile in
terms of the rescaled variable x � i=N upon approaching
the infinite system limit. A preliminary finite size scaling
analysis is compatible with a rescaled transition width
which scales as N�� with � ’ 0:5. This is very different
from the mean-field result, �MFA � 1 [13]. Thus we have
identified an intermediate parameter range where low and
high density phases coexist separated by a sharp domain
wall (DW). We also find that the discontinuity in the
density seems to be stable or at least localized in a small
region compared to the system size [15]. This has to be
contrasted with the domain wall (‘‘shock’’) found in the
TASEP right at the phase boundary between the high- and
low-density phases (	 � 
< 1=2) which is delocalized
and moves as a random walker once it is far from the
system boundaries [9].

Phenomena like phase separation/coexistence have
previously been observed in nonhomogeneous systems
with open boundaries like TASEP with isolated localized
defects [16,17]. The location of the domain walls are
expected and found to be identical to the defect positions.
In contrast, the location of the DW in our homogenous
model is self-tuned and determined by the values of the
kinetic rates (see below). In systems with periodic bound-
ary conditions (which are not the subject of this Letter)
phase separation has been found in TASEP with a block-
age [18], quenched disorder [19], or in homogeneous
systems with multispecies particle dynamics [20,21]
(see for a general criterion [22]).

To rationalize all these findings we have developed a
mean-field theory. Defining �i � hnii, the MFA consists
of taking the average of Eqs. (1a) and (1b) and factoriz-
ing the two-site correlations, hnini�1i � �i�i�1. Then
Eqs. (1a) and (1b) display the same form provided that
the binary occupation number ni is replaced by the con-
tinuous variable �i with 0 � �i � 1. The equations are
now interpreted as ordinary differential equations.

To obtain an analytically tractable system of equations
we have coarse-grained the discrete lattice with lattice
constant " � L=N to a continuum. For fixed total length
L � 1 and N ! 1; " ! 0 one gets the nonlinear differ-
ential equation for the average profile in the stationary
state,

"
2
@2x�� �2�� 1�@x���A�1� �� ��D� � 0 ; (2)

where positions are measured by the rescaled variable
x � i=N; 0 � x � 1. Equations (1b) translate now to
boundary conditions for the density field, ��0� � 	 and
��1� � 1� 
. One observes that MFA respects the
particle-hole symmetry mentioned above, provided
that when ��x� � 1� ��1� x� one interchanges 	 $

; �A $ �D. Because of this property we can restrict
the discussion to the case �A > �D [23]. The numerical
mean-field solutions are included in Fig. 2(a) for different
values of �D. We find good agreement of MFA compared
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with MCS for the full range of kinetic rates in the limit of
large N.

In analogy with fluid dynamics, to describe these
results one considers an effective current density which
for our problem reads j � ��"=2�@x�� ��1� ��.
Abbreviating the fluxes from and to the reservoir by
F A � �A�1� �� and FD � �D�, Eq. (2) can be read
as a balance equation: @xj � F A �FD. Since there are
two boundary conditions one has to be careful when
discarding the second derivative in (2) for a small pre-
factor ". The average profile is then governed by similar
physics as the Burgers’s equation in the inviscid limit [16].
Generically one expects shocks (here DW) in the bulk and
density layers at the boundaries (‘‘boundary layers’’).
Crossing a DW, the current j remains continuous in the
limit " ! 0, while boundary layers form whenever the
density associated with the bulk current does not fit
the boundary condition. To better understand these fea-
tures, we have explored the dependence of the density
profile ��x� on �D for fixed 	, 
, and K [see Fig. 2(c)].
For small kinetic rates, �D � 10�3, the profile is close to
the one expected from TASEP, with a boundary layer
bridging the bulk density up to � � 1� 
 [not resolved
in Fig. 2(c)]. Increasing �D the slope of the bulk density
increases. For �D > 0:05, MFA connects a region of low
density (LD), i.e., ��x�< 1=2, to a high density (HD)
region, ��x� > 1=2, by a DW. Whereas the solution close
to the left boundary is smooth, one finds a boundary layer
at the right end bridging densities � � 1=2 down to � �
1� 
. For larger �D the DW moves to the left, while
the slope of the LD region increases and the HD pro-
file flattens approaching the Langmuir density value
K=�K � 1�. For �D > 1 the DW remains practically lo-
calized at the left boundary. Note that the DW location
strongly depends on typical values of the bulk kinetic
rates when they are comparable with the boundary rates
	 and 
.

In the inviscid limit " ! 0 the complete phase diagram
can be obtained analytically within MFA, up to some
treatment of the density discontinuities. Interestingly, the
solution found is never given by either constant low/high
density profiles as in TASEP or the Langmuir isotherm,
but by a completely new set of solutions [14].

The mean-field analytical solution allows one to draw
the phase diagram and compare it to TASEP. Figure 3
represents a cut through the phase diagram for �D � 0:1
and K � 3 with 	 and 
 used as control parameters. One
finds an extended LD-HD coexistence region separating a
LD and a HD phase. At the boundaries of the coexistence
region, the DW between the low and high density phases
are located in the proximity of the open ends of the
1D lattice. For small 	 the DW develops at the right
end, x � 1, and moves to the left as 	 increases. At
the phase boundary between the coexistence region and
the HD phase, the DW is located at the left end of the
lattice, x � 0. In both cases, when the DW enters and
leaves the lattice, it matches with a boundary layer con-
086601-3
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FIG. 3. Phase diagrams obtained by the exact solution of the
stationary mean-field Eq. (2) in the inviscid limit for K � 3
and �D � 0:1. The inset shows the dependence of the DW
amplitude on 	 for different values of 
.
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necting the bulk density with the density given by the
corresponding boundary condition. (In this case, bound-
ary layers appear only for 	 > 1=2 and/or 
 > 1=2.)
MFA shows that the bulk density profile becomes inde-
pendent of 
 for 
 > 1=2. Hence, in this regime for a
given 	 only the magnitude of the boundary layers
changes, but not the profile of the bulk density. This
explains the vertical phase boundaries of the coexistence
region for 
 � 1=2.

In addition to its location the DW is also characterized
by its height (see Fig. 3). For 
< 1=2 we find that the
height discontinuously jumps to a finite value upon enter-
ing the coexistence region from the LD phase. This has to
be contrasted with the case 
 � 1=2 where the phase
transition from the LD to the coexistence phase is char-
acterized by a continuous increase in the height of the DW
(compare the dashed line in Fig. 3). In MFA we find that
both DW amplitude and position exhibit power law be-
havior with �	� 	c�

1=3 and �	� 	c�
2=3, respectively. At

the phase boundary to the HD phase the DW height
always jumps to zero discontinuously.

Working out the complete rich scenario for different
�A and �D in the limit N 
 1 needs a detailed analysis
of the phase diagram [14]. We just mention that the
original maximal current phase of the TASEP appears
for �A � �D only, where the Langmuir density is valued
to 1=2. This can be proved numerically as well as analyti-
cally. Conversely, as soon as �A � �D, MFA predicts
that such a phase continuously disappears in favor of a
HD phase if �A > �D (respectively, an LD phase if
�A <�D).
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