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Connection between Adam-Gibbs Theory and Spatially Heterogeneous Dynamics
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We investigate the spatially heterogeneous dynamics in the extended simple point charge model of
water using molecular dynamics simulations. We relate the average mass n� of mobile particle clusters
to the diffusion constant and the configurational entropy. Hence, n� can be interpreted as the mass of
the ‘‘cooperatively rearranging regions’’ that form the basis of the Adam-Gibbs theory of the dynamics
of supercooled liquids. We also examine the time and temperature dependence of these transient
clusters.
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mass z of CRR, thus connecting the quantitative SHD
analysis to the qualitative approach of AG. Our results are

It appears that the basic features of SHD found for
models of simple liquids extend to the more complex
More than 35 years ago Adam and Gibbs (AG) pro-
posed a theory to describe the dynamics of supercooled
liquids [1,2]. In their approach they suggest that the
system changes its configuration by the motion of inde-
pendent cooperatively rearranging regions (CRR). Their
main result is that the diffusion constant D is related to
the temperature T and the configurational entropy of the
system Sconf by

D / exp��A=TSconf�: (1a)

In the thermodynamic limit, they interpreted Sconf as
kB logWc, where Wc is the number of configurations ac-
cessible by the system and kB is the Boltzmann constant.
More recently, Wc has been interpreted as the number of
basins in the potential energy surface (PES) accessible to
the system in equilibrium, facilitating direct calculation
of Sconf by computer simulations [3]. The AG prediction
has been tested and appears to be valid across a wide
spectrum of liquids [4,5]. The AG theory also hypothe-
sizes a relation between Sconf and the characteristic mass z
of the CRR. However, the CRR are not precisely defined
in the theory, and in the absence of a definition it has been
challenging to test this aspect of AG theory.

More recently, computer simulations on simple systems
(such as Lennard-Jones mixtures) have shown that par-
ticles of high mobility tend to form clusters, and the
concept of spatially heterogeneous dynamics (SHD) is
evolving [6–14]. Sets of neighboring particles move
with enhanced or diminished mobility relative to the
average on a time scale intermediate between ballistic
and diffusive motion. While there has been interest in the
possible relation between clusters obtained from a SHD
analysis and the CRR of the AG theory, a link between
the quantitative SHD methods and the AG predictions has
not been found.

Here we show that on the time scale where SHD is
prominent, the average cluster size n� can be related to the
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based on molecular dynamics simulations of the extended
simple point charge model of water [15]. We simulate
N � 1728 molecules at fixed density � � 1:0 g=cm3 and
a range of T from 200 to 260 K (at 10 K intervals). For
each T, we run two independent simulations to improve
statistics. We find that D can be fit with

D� �T � TMCT�
� (1b)

using the values for the mode coupling temperature
TMCT � 193 K and the diffusivity exponent � � 2:8 re-
ported in Ref. [16].

To facilitate comparison with previous work, we use
the same approach to define SHD clusters as that em-
ployed to study a Lennard-Jones (LJ) mixture [8] and
experiments on colloids [14]. We define the mobility of a
molecule at a given time t0 as the maximum displacement
of the oxygen atom in the interval �t0; t0 	�t
. Following
Ref. [8], we calculate the self part of the time-dependent
van Hove correlation function [17] Gs�r; t� at t � t�, the
time at which the non-Gaussian parameter

�2�t� �
3
5hr

4�t�i=hr2�t�i2 � 1 (2)

has a maximum [18]. We fit Gs�r; t� with a Gaussian
approximation G0�r� and define r� as the second inter-
section between these distributions. We find r� is in the
range 0.2–0.25 nm for all T. We focus on the fraction� of
‘‘mobile’’ molecules given by � �

R
1
r� 4�r

2Gs�r; t��dr,
i.e., the average fraction of molecules with a displacement
larger than r� in the interval t�. Depending on T, we find
6%<�< 8%. For simplicity, we fix � � 7% for all T.
Similar values of� were found in atomic systems [7,8,14]
and in polymer melts [19]. Finally, we define a cluster of
mobile molecules at each interval �t as those mobile
molecules whose nearest neighbor oxygen-oxygen dis-
tance at time t0 is less than the first minima of the
oxygen-oxygen radial distribution function [20,21].
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molecular liquid, water. In Fig. 1 we present four snap-
shots of mobile particle clusters at T � 210 K for �t �
t�. Particles follow each other in a roughly linearly fash-
ion [7,14]. In LJ systems [7], monoatomic liquids [22],
and polymers [23], complex clusters are composed of
more elementary ‘‘strings,’’ where particles follow each
other in a roughly linear fashion. For water, small clusters
are indeed stringlike [e.g., Fig. 1(a)], but the molecules
conform to the hydrogen bond geometry, and hence the
clusters appear to be less linear than clusters found in LJ
systems. Clusters become less stringlike as their size
increases [7,24], and the fraction of branching points—
molecules with more than two neighbors [Fig. 1(b)]—
increases with increasing cluster size [Figs. 1(c) and 1(d)].

To relate SHD to the AG approach, we calculate the
average cluster mass hn��t�i for each T. In the AG ap-
proach to dynamics, the CRR are characterized by the
number of particles z and configurational entropy sconf�z�
of the CRR; AG argue that z � Nsconf�z�=Sconf . Motivated
by the recent finding that the average instantaneous clus-
ter mass scales inversely with the entropy in a model of
equilibrium polymerization [25], we use n� � hn�t��i as a
measure of z, since at t� correlations are very pronounced
and hn�t�i is nearly maximal [26]. Using the values of
Sconf from Ref. [4], we find a linear relationship between
FIG. 1 (color online). Four clusters of mobile molecules found
at T � 210 K defined with an observation time �t � t�. Tubes
connect neighboring molecules whose oxygen-oxygen distance
is less than 0.315 nm, the first minimum in the oxygen-oxygen
radial distribution function. Small clusters can be either
(a) stringlike or (b) nonstringlike, showing branching points
(molecules with more than two neighbors). Larger clusters
exhibit more complicated structures, including (c) substrings
and (d) loops.
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n� and 1=Sconf [Fig. 2(a)],

n� � 1 /
1

Sconf
: (3)

This finding is consistent with the possibility that n� � 1
can be understood as a measure of z and provides a
quantitative connection between SHD clusters and the
AG approach [27]. It is necessary to subtract one from
n� to obtain direct proportionality, implying that a cluster
of unit size does not correspond to a CRR [8]. Equation (3)
provides a clear link between a cluster property n� and a
property of the PES, Sconf . Since Eq. (1a) relates Sconf to
D, using Eq. (3) we expect to find

D� e�A�n
��1�=T: (4)

Indeed, Fig. 2(b) confirms this expectation.
We next address the question of how SHD clusters in

water depend on the observation time �t. We focus on the
number average hn��t�i and hn��t�iw � hn2��t�i=hn��t�i;
hn��t�iw, the weight average cluster size, is the average
size of a cluster to which a randomly chosen molecule
belongs. Figure 3 shows hn��t�i and hn��t�iw for T �
210 K. To eliminate the random contribution, we normal-
ize hn��t�iw by hnriw, the weight average cluster size for
�N randomly chosen molecules. For comparison, we also
include the non-Gaussian parameter �2��t� and the
mean-squared displacement hr2��t�i [Fig. 3(a)] which
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FIG. 2. (a) The average cluster size n� is proportional to the
inverse of the configurational entropy Sconf suggesting that
n� � 1 can be used as a measure of the size of the cooperatively
rearranging regions hypothesized by Adam and Gibbs. The
units of Sconf are J=Kmol. (b) Log-linear plot of �n� � 1�=T as
a function of the diffusion constant D. The AG prediction D�
exp�A=TSconf� implies that logD� �n� � 1�=T. This relation-
ship holds for almost three decades in D.
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displays the three characteristic time regimes, ballistic,
cage, and diffusive.

The behavior of hn��t�iw=hnriw is analogous to that for
polymer systems [19], with the exception that there is a
clear increase in hn��t�iw=hnriw at the time scale on
which molecules go from the ballistic to the cage regime.
This additional feature is likely due to strong correlations
in the vibrational motion of the first-neighbor molecules,
owing to the presence of hydrogen bonds. In Fig. 3(c) we
show hn��t�iw=hnriw for all T. For T � 240 K, the maxi-
mum in hn��t�iw=hnriw increases in magnitude and shifts
to larger time scales with decreasing T. The plateau at the
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FIG. 3. (a) Mean square displacement hr2��t�i at T � 210 K
showing the ballistic, cage, and diffusive regimes (separated
by dotted lines). (b) Normalized weight cluster size
hn��t�iw=hnriw (�), non-normalized average number of mole-
cules hn��ti� (�), and the non-Gaussian parameter �2��t� (�).
All three quantities correlate with the two crossovers in
hr2��t�i and the maxima of hn��t�iw=hnriw and hn��ti� occur
at times slightly smaller than the time for the maximum in
�2��t�. (c) Weight cluster size hn��t�iw=hnriw for temperatures
ranging from 200 to 260 K in intervals of 10 K. Note the
T-independent plateau at the crossover from ballistic motion to
cage.
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crossover from the ballistic regime is nearly T indepen-
dent, as expected since the mean collision time is nearly T
independent. For T � 250 K, the maximum and the pla-
teau merge, and hence it is not possible to separately
distinguish these features.

We find that t� is slightly larger than tmax, the time
where the maximum of hn��t�iw occurs. Both character-
istic times correspond to the late-�/early-� time regime
of the mode coupling theory (MCT). We find (Fig. 4)

t� � �T � TMCT�
��; �� � 2:7� 0:1
 (5a)

and

tmax � �T � TMCT�
�x; �x � 2:7� 0:1
: (5b)

The values of � and x are close to the value of �, � � 2:8.
For the LJ polymer melt, simulations show that x � 1=2a,
where a is the scaling exponent predicted by MCT for the
� time scale, suggesting that tmax may be a measure of the
‘‘elusive’’ � relaxation time scale [19]. MCT predicts that
knowing �, defined in Eq. (1b), is sufficient for determin-
ing a [28]. If tmax were a measure of the� time scale, then
we would expect a � 0:28 [16], and hence x would be
equal to 1:78. From Eq. (5b), we see that x > 1:78, so tmax

does not provide a measure of the � time scale.
Additional tests of the temperature scaling of tmax for
other liquids are needed to determine the range of liquids
for which tmax can be considered a measure of the � time
scale.
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FIG. 4. Temperature dependence of t� and tmax, the times at
which the maxima of the non-Gaussian parameter and the
weight average cluster size occur. We find t� � �T=TMCT � 1��

and tmax � �T=TMCT � 1�x, where x � � � 2:7� 0:1. The ex-
pected value of the exponent x, following arguments in [19], is
1:78 (long-dashed line). The values of t� and tmax for T � 200 K
were not included in the fits because 200 K is too close to
TMCT � 193 K (deviations from MCT are known to occur as
T ! TMCT).
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In summary, the relation we find between n� and Sconf ,
Eq. (3), provides a link between SHD and properties of
the PES [29]. In the context of AG theory, our findings
support the interesting possibility that n� is a measure
of the size of the cooperatively rearranging regions.
Furthermore, our simulations show that SHD in water
are qualitatively similar to those found in LJ systems, but
the cluster shapes are strongly influenced by the geometry
of the hydrogen bond network.

We thank J. F. Douglas, Y. Gebremichael, S. C. Glotzer,
T. G. Keyes, S. Mossa, and F. Sciortino for fruitful dis-
cussions, S. Kamath and S. Kumar for sharing their ideas
on the relation between the cluster mass and Sconf for a
lattice model of a dense polymer melt, and NSF
Chemistry Grant No. CHE0096892 for support.
08550
[1] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
[2] For a clear description of the physical basis of AG theory,

see P. G. Debenedetti, Metastable Liquids (Princeton
University, Princeton, 1996).

[3] F. H. Stillinger and T. A. Weber, J. Phys. Chem. 87, 2833
(1983); F. Sciortino et al., Phys. Rev. Lett. 83, 3214
(1999); B. Coluzzi, G. Parisi, and P. Verrocchio, ibid.
84, 306 (1999).

[4] A. Scala, F.W. Starr, E. La Nave, F. Sciortino, and H. E.
Stanley, Nature (London) 406, 166 (2000).

[5] S. Sastry, Nature (London) 409, 164 (2001); S. Mossa
et al., Phys. Rev. E 65, 041205 (2002); R. J. Speedy, Mol.
Phys. 95, 169 (1998).

[6] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C.
Glotzer, Phys. Rev. Lett. 79, 2827 (1997).

[7] C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H.
Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).

[8] S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton,
Phys. Rev. E 60, 3107 (1999).

[9] M. Hurley and P. Harrowell, Phys. Rev. E 52, 1694
(1995).

[10] B. Doliwa and A. Heuer, Phys. Rev. Lett. 80, 4915
(1998).

[11] K. Schmidt-Rohr and H.W. Spiess, Phys. Rev. Lett.
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