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Statistics of Lagrangian Velocities in Turbulent Flows
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We present a generalized Fokker-Planck equation for the joint position-velocity probability distri-
bution of a single fluid particle in a turbulent flow. Based on a simple estimate, the diffusion term is
related to the two-point two-time Eulerian acceleration-acceleration correlation. Dimensional analysis
yields a velocity increment probability distribution with normal scaling v � t1=2. However, the statistics
need not be Gaussian.
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FIG. 1. A comparison of probability distributions
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the experimentally obtained ones determined by the Lyon
group [6] [the curves are shifted (from above: t � 0:15, 0.3,
0.6, 1.2, 2.5, 5.0, 10.0, 20.0, and 40.0 ms) and fitted by the
values � � 1:71, 1.48, 1.36, 1.26, 1.14, 1.06, 0.94, 0.70,
condition h�v; 0� � ��v�. The Oboukhov model yields the and 0.70].
The question, how marked fluid particles behave in a
turbulent flow, is one of the central issues in the theory of
turbulence [1–4]. It is intimately related to the problem of
turbulent diffusion and mixing. Recently, experiments
[5,6] have been performed, which allow one to quantify
in a statistical manner the behavior of single marker
particles. The behavior of a single particle, initially start-
ing at the position y, has been examined in great detail by
considering its path X�t; y� and velocity U�t; y�. The
central quantity of interest is the probability distribution
function (PDF)

f�u;x; y; t� � h��u� U�t; y����x�X�t; y��i; (1)

where the brackets indicate a suitable average. In the
experiments [6], the PDF h�v; �� of the velocity increment
vt��; y� � U�t� �; y� � U�t; y� has been measured for
various values of the time delay � for the case of sta-
tionary turbulence. Whereas standard scaling arguments
along the lines of Kolmogorov’s theory [2] suggest a
simple scaling behavior of the moments of the increments
hv��; y�ni � �n=2, the measured moments show multifrac-
tal scaling behavior, hv��; y�ni � �
n , where 
n � n=2�
��n� is a nonlinear function of n. This multifractal scal-
ing is a result of the phenomenon of intermittency [6].
Intermittency manifests itself in a non-Gaussian shape of
the probability distribution of the increments: Its shape
changes from a strongly non-Gaussian one at small time
delays � up to a Gaussian at large time scales (cf. Fig. 1).
Recently, it has been suggested that this type of inter-
mittency is related to long time correlations of the accel-
eration [7].

An early model for the PDF (1) was devised by
Oboukhov [8], who assumed that the turbulent accelera-
tion _UU�t; y� � a�t; y� is a Gaussian, �-correlated random
force, hai�t; y�aj�t0; y�i � 2Q�ij��t� t

0�, such that the
PDF obeys a Fokker-Planck equation:

_ff�u;x; y; t� � u 
 rf�u;x; y; t� � Q�uf�u;x; y; t�: (2)

For stationary turbulence, the PDF of the velocity incre-
ment v��; y� equals h�v; �� �

R
dxf�u;x; y; �� with initial
0031-9007=03=90(8)=084501(4)$20.00 
scaling behavior hv���2i � �, which is theoretically sup-
ported by standard dimensional arguments along
Kolmogorov’s theory of 1941 [2]. However, until now,
except for [9] no attempt has been made to derive (2) by
an analysis of the Navier-Stokes equation. Recently, I
have approached this problem by considering evolution
equations for N-particle PDFs [10]. Thereby, an infinite
hierarchy of evolution equations for the Lagrangian PDFs
of N marker particles is formulated. The evolution equa-
tion for the PDF of N marker particles contains the PDF
of N � 1 particles. One tries to describe the statistical
behavior of N marker particles by a closure of the hier-
archy, i.e., by expressing the PDF of N � 1 particles as a
functional of the PDF of N particles. The present Letter
aims at describing results for the single-particle PDF. A
simple closure assumption will yield an extension of the
Fokker-Planck equation (2) including a memory term. In
contrast to Oboukhov’s model, this generalized Fokker-
Planck equation has scaling solutions with non-Gaussian
2003 The American Physical Society 084501-1
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PDFs and, therefore, can account for the recent findings
[6]. Our result supports the conjecture [7] that long time
correlations are at the origin of the intermittent shapes of
the PDFs, since the obtained Fokker-Planck equation
contains a time memory.

Let us start by establishing an evolution equation of the
one particle PDF f�u;x; y; t� involving the Navier-Stokes
dynamics. Using standard procedures [10], one can derive
the following equation f�u;x; y; t�:

_ff�u;x;y; t��u 
 rxf�u;x;y; t�

��ru 

Z
dvdrA�x� r;v�f�v;r; t;u;x;y; t�:

(3)
For an infinitely extended fluid, the operator A�x� r� is
related to the pressure term and the dissipation term in the
Navier-Stokes equation and is explicitly given by

Ai�x� r;v� ��
X
jk

@3

@xi @xj @xk

1

4�jx� rj
vjvk

����x� r��rvi: (4)

The evolution equation for the one point PDF is not
closed. It involves a mixed Eulerian-Lagrangian PDF
f�v;r; t;u;x;y; t0 � t�, which is defined according to
084501-2
f�v;r; t;u;x;y; t0� � h��v�V�r; t����u�U�t0;y��

� ��x�X�t0;y��i: (5)

Here, V�r; t� denotes the Eulerian velocity field at location
r and time t. Let us consider the evolution equation for
the probability distribution f�v;r; t;u;x;y; t0�:
@
@t0
f�v;r;t;u;x;y;t0��u 
rxf�v;r;t;u;x;y;t0�

��ru 

Z
dv0dr0A�x�r0;v0�f�v0;r0;t0;v;r;t;u;x;y;t0�:

(6)

The evolution equation for f�v;r;t;u;x;y;t0� contains a
three point probability distribution, where v;v0 are Euler-
ian fields at the points �t;r� and �t0;r0�, respectively. In
principle, a hierarchy of evolution equations for higher
order PDFs has to be considered.

If one compares the Oboukhov model (2) with the
evolution equation for the single-particle PDF (3), one
immediately recognizes that this model is based on a
simple closure assumption. In the following, we shall
present an exact generalization of this equation starting
from (3) and (6). To this end, we introduce the condi-
tional probability distribution p�v0; r0; t0; v; r; tju;x; y; t0�,
f�v0; r0; t0; v; r; t;u;x; y; t0� � p�v0; r0; t0; v; r; tju;x; y; t0��
f�u;x; y; t0� and solve Eq. (6) for f�v; r; t;u;x; y; t�:
f�v; r; t;u;x; y; t� � f0�v; r; t;u;x� ut; y; 0�

�
Z t

0
dt0�ru

Z
dv0 dr0 A�~xx � r0; v0�p�v0; r0; t0; v; r; tju; ~xx; y; t0�f�u; ~xx; y; t0�~xx�x�u�t�t0�: (7)

The first term stems from the initial condition. Inserting this expression into Eq. (3), one obtains the following evolution
equation for the single-particle PDF:

_ff�u;x; y; t� � u 
 rxf�u;x; y; t� � �ru 

Z t

0
dt0D1�u; t; t0ju;x� u�t� t0�; y�f�u;x� u�t� t0�; y; t0�

�ru

Z t

0
dt0D2�u; t; t0ju;x� u�t� t0�; y��ruf�u; ~xx; y; t0�~xx�x�u�t�t0� � finit: (8)

We have arrived at a generalized Fokker-Planck equation, i.e., an equation including a time memory. However, the drift
and diffusion terms depend on the (unknown) conditional PDF p�v0; r0; t0; v; r; tju;x; y; t0�. Furthermore, a term finit
stemming from initial conditions is introduced by solving Eq. (6). Such a term typically arises for non-Markovian
stochastic processes.

Let us now estimate the generalized drift and diffusion terms. The generalized diffusion term is explicitly given by

D2�u; t; t0ju;x; y� �
Z
dv0 dr0 dv00 dr00�A�x� r0; v0�A�x� r� r00; v00�p�v0; r0; t; v00; r00; t0ju;x; y; t0�r�u�t�t0�: (9)

This term is the conditional two-time, two-scale acceleration-acceleration correlation:

D2�u; t; t0ju;x; y� � ha�x; t�a�x� r; t0�jU�t0; y�;X�t0; y�ir�u�t�t0�: (10)

Here, U�t; y� and X�t; y� is the Lagrangian velocity and position of the fluid particle under consideration. The drift term
is obtained according to

D1�u; t; t0ju;x; y� � �ru 
 ha�x; t�a�x� r; t0�jU�t0; y�;X�t0; y�ir�u�t�t0�: (11)

Thus far, all the calculations are exact. We shall now introduce an approximation which allows one to relate the
diffusion term to Eulerian characteristics of the turbulent acceleration field at the marker position X�t; y�. To this end,
we neglect the dependency of the conditional expectation values (10) and (11) on the behavior of the marker particle.
084501-2
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Formally, this is achieved by the approximation

p�v0; r0; t0; v; r; tju;x; y; t� � fE�v0; r0; t0; v; r; t�: (12)

The drift term (11) vanishes, whereas the diffusion
term (10) equals the two-point two-time acceleration-
acceleration correlation ha�x; t�a�x� r; t0�ir�u�t�t0�. The
approximation (12) means that the correlation between
acceleration fields at space time points �t;x� and �t0;x� r�
is independent on the velocity u of a marker particle at
point �t0;x� r�. This approximation (12) leads us to the
Fokker-Planck equation including a memory term:

_ff�u;x;y;t��u 
rxf�u;x;y;t�

�ru

Z t

0
dt0D2�u;t;t0��ruf�u;~xx;y;t0�~xx�x�u�t�t0�: (13)

This is a generalization of Oboukhov’s model since long
range correlations in the Eulerian acceleration field are
taken into account.

The equal time acceleration-acceleration correlation
has been studied in various publications [11–14]. How-
ever, no information seems to be available for t � t0.
Therefore, we are forced to resort to dimensional analysis
on the basis of Kolmogorov’s theory K41 [2]. Since we are
interested in the behavior in the inertial range, only the
gradient pressure contribution to the acceleration is taken
into account. According to the standard theory of
Kolmogorov [2], the acceleration-acceleration correlation
function ha�x; t�a�x� r; t0�i has the form ��3=20 =�1=2� �
Ff�r=��3=4=�1=4�; ��t� t0�=��1=2=�1=2�g, where �0 de-
notes the local mean energy dissipation rate. In the in-
ertial range of turbulence, this expression should be
independent on the kinematic viscosity � which leads
to the functional dependency ha�x; t�a�x� r; t0�i �
��4=30 =r2=3�H�r=�t� t0�3=2, where H is an arbitrary func-
tion with H�1�� const. As a result, the diffusion term
takes the form

D2
ij�u;�� �

�3=20

��u�2=3

�
�ij!

�
u

�1=2

�
�
ui
u

uj
u
"
�
u

�1=2

�	
: (14)

Furthermore, one can formally show that the generalized
Fokker-Planck equation possesses solutions with scaling
behavior 1=t6f�u=t1=2;x=t3=2;y=t3=2� similar to the PDFs
belonging to Oboukhov’s model. Usually, such a scaling
behavior is thought to be intimately related to Gaussian
statistics. In the following, we shall indicate that this need
not be the case.

Let us consider the velocity PDF h�u; t�, which due to
isotropy is a function of u � juj. It obeys the equation (in
d dimensions)

_hh�u; t� �
1

ud�1

@
@u

Z t

0

dt0

�t� t0�2=3
ud�1�2=3Q0

�
u�����������
t� t0

p

�

�
@
@u
h�u; t0�: (15)
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Since we are not able to give a more detailed form of the
function Q0�#� � �3=20 �!�#� � "�#�, we assume that it
has a power law behavior in #, Q0�#� � Q0#�, � > 0.
The integral in (15) diverges at t0 � t for 2=3� �=2 > 1.
A regularized version is

_hh�u; t� �
1

ud�1

@
@u
ud�1�2=3��Q0

@
@u
Dpt h�u; t�

p � �=2� 1=3; (16)

where we use the Riemann-Liouville derivative,Dpt f�t��
f1=���n�p�g�dn=dtn�

R
t
0f�dt�=��t� t

0�1�n�pgf�t0�, (n�
1<p<n) [15]. The case ��2=3 is just the Oboukhov
model with a Gaussian distribution. For the following, let
us assume that n�1, i.e., 1=3<�=2<4=3. For this class
the behavior of the velocity is described by the so-called
continuous time random walk model, where, in the
present case, the diffusion term is velocity dependent
[15]. An analytical solution to this problem is known
[16] and the PDF is positive (which is not guaranteed,
e.g., for n�0). The PDF takes the form

h�v;t��
Z 1

0
dsn�s;t�h1�u;s;2=3���: (17)

Here, n�s;t�� 1
!�t=s

1�1=!�l!�t=s
1=!� and l!�x� is a one-

sided Lévy distribution whose Laplace transform is
l!�y�� exp�y! (!��=2�1=3). The probability distri-
bution h1�u;s;�� is the PDF of Eq. (16) with p�0 [17]:

h1�u; s;�� �
A��; d�

�Q0�2���2sd=�2���
exp

�
�

u�2���

Q0�2���2s

	
:

(18)

The shape of the obtained probability distribution is a
function of the parameter �. However, � may be fixed by
fitting the theoretical curve to the experimentally deter-
mined PDF. Figure 1 exhibits the result of the fits to the
data of the Lyon group [6]. Each PDF can be well repro-
duced by fixing a definite value of �. This supports the
power law ansatz for Q�#�. We mention that the introduc-
tion of a t dependence of the value � allows us to parame-
trize intermittency effects related with a change of the
shape of the PDF. However, this is not the topic of the
present Letter. Our aim was to investigate a closure as-
sumption on the hierarchy of evolution equations for N
point PDFs leading to velocity PDFs with fat tails exhib-
iting simple scaling behavior h�u; t� � 1=t3=2h�u=

��
t

p
�.

In summary, we have investigated the evolution of the
PDF of a marker particle in a fully developed homoge-
neous and isotropic turbulent fluid flow. As an exact result,
we have obtained a generalized Fokker-Planck equation
including a temporal memory. The simplest possible clo-
sure approximation has led us to a generalized Fokker-
Planck equation with vanishing drift term, whereas the
diffusion term is related to the Eulerian two-point two-
time acceleration-acceleration correlation. A K41-scaling
assumption on this quantity yields the well-known
084501-3



P H Y S I C A L R E V I E W L E T T E R S week ending
28 FEBRUARY 2003VOLUME 90, NUMBER 8
scaling behavior for the Lagrangian PDF. An assumed
power law behavior of the diffusion coefficient Q0�#� �
#� has led us to a velocity statistics belonging to the class
of continuous time random walks [15]. These are non-
Markovian generalizations of the simple random walk
underlying Oboukhov’s model. A suitable choice of the
free parameter � allows us to reproduce the experimen-
tally determined PDFs, which for small time differences
are strongly non-Gaussian with fat tails. Finally, we want
to mention that our results support the ideas of [7], who
also emphasize the importance of memory effects and
establish a non-Markovian model for the behavior of the
acceleration. However, the process devised in [7] is a
multifractal random walk, not a continuous time random
walk with velocity dependent diffusion coefficient, as
obtained by our analysis.
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