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Fano Resonances with Discrete Breathers
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A theoretical study of linear wave scattering by time-periodic spatially localized excitations
(discrete breathers) is presented. A peculiar effect of total reflection occurs due to a Fano resonance
when a localized state originating from closed channels resonates with the open channel. For the
discrete nonlinear Schrödinger chain, we give an analytical result for the frequency dependence of the
transmission coefficient, including the possibility of resonant reflection. We extend the analysis to
chains of weakly coupled anharmonic oscillators and discuss the relevance of the effect for electronic
transport spectroscopy of mesoscopic systems.

DOI: 10.1103/PhysRevLett.90.084101 PACS numbers: 05.45.–a, 42.25.Bs, 73.23.–b
presence of a time-periodic scattering potential is char-
acterized by open and closed channels emerging from the
Floquet formalism [1,5,6]. The open channel guides the

function of the maximum amplitude ÂA0. The spatial
localization is given by an exponential law ÂAn 	 e��jnj,
where cosh� � j�bj=2C [11]. Thus, the breather can be
It is a well established fact that various nonlinear
spatially discrete systems can support time-periodic spa-
tially localized excitations called discrete breather (DB)
states [1]. These states originate from a peculiar interplay
between the nonlinearity and the discreteness of the
lattice rather than from a disorder. While the nonlinearity
yields an amplitude-dependent tunability of frequencies
of DBs �b, the spatial discreteness of the system leads to
finite upper bounds for the frequency spectrum of small
amplitude plane waves !q. This tunability allows one to
escape resonances of all multiples of the breather fre-
quency �b with the plane wave frequencies !q and, cor-
respondingly, to stabilize the DB state. The frequency
dependent localization length of DBs and their stability
with respect to small amplitude perturbations have been
widely studied [1]. DBs have been observed in experi-
ments covering such diverse fields as interacting Joseph-
son junctions [2], magnetic systems [3], and lattice
dynamics of crystals [4].

For propagating linear waves, a DB acts as a time-
periodic scattering potential, and the transmission coef-
ficient T depends on both the wave vector q of the linear
wave and the breather frequency �b. The most peculiar
effect, observed in many numerical studies of wave scat-
tering by DBs, is the total reflection as T � 0 [5,6]. Note
that the presence of a static potential cannot lead to such a
total reflection in one-dimensional systems. Similar fea-
tures are also discussed in other areas, such as electron
transport through point contacts and quantum dots and
wires [7,8]. The crucial condition allowing a total reflec-
tion in these systems is the presence of a few coupled
channels connected with the transverse direction of mo-
tion. On the other hand, the wave propagation in the
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propagating waves, while the eigenfrequencies of closed
channels do not match the spectrum of linear waves.

In this Letter, we show that the total reflection of linear
waves in the open channel occurs when a localized state
originating from one of the closed channels resonates
with the open channel spectrum, a condition similar to
the well-known Fano resonance [9]. We use this under-
standing to predict Fano resonance positions for wave
scattering by breathers in weakly interacting anharmonic
oscillator chains and to discuss the relevance of this effect
for electronic transport spectroscopy.

We start our study of the wave scattering by DB with
the discrete nonlinear Schrödinger system (DNLS),
which has been used frequently to study breather proper-
ties due to its tractable form. Wave scattering by breathers
in the DNLS was studied numerically in [10], where
resonant total reflection was also observed. First, we
provide an analytical solution for the DNLS scattering
problem. The equations of motion for the DNLS are

i _��n � C��n�1 ��n�1� � j�nj
2�n; (1)

where the integer n labels the lattice sites, �n is a complex
scalar variable, and C describes the nearest neighbor
interaction on the lattice. For small amplitude waves
�n�t� � 
ei�!qt�qn� the dispersion relation is

!q � �2C cosq: (2)

Breather solutions have the form

�̂�n�t� � ÂAne�i�bt; ÂAjnj!1 ! 0; (3)

where the time-independent amplitude ÂAn can be taken
real valued, and the breather frequency �b � !q is a
2003 The American Physical Society 084101-1



P H Y S I C A L R E V I E W L E T T E R S week ending
28 FEBRUARY 2003VOLUME 90, NUMBER 8
approximated as a single-site excitation if j�bj 
C.
Then the relation between the single-site amplitude ÂA0

and �b becomes �b � ÂA2
0. In the following, we neglect

the breather amplitudes for n � 0, i.e., we assume
ÂAn�0 � 0, since ÂA�1 � �C=�b�ÂA0  ÂA0. We emphasize
that in the limit of a nearly single-site localized breather
solution in the DNLS the solution is linearly stable [11].

We add small perturbations to the breather solution

�n�t� � �̂�n�t� ��n�t� (4)

and linearize Eq. (1) with respect to �n�t�:

i _��n � C��n�1 ��n�1� ��b�n;0�2�0 � e�2i�bt��
0�;

(5)

with �n;m being the usual Kronecker symbol. The general
solution to this problem is given by the sum of contribu-
tions due to two channels,

�n�t� � Xnei!t � Y�
ne�i�2�b�!�t; (6)

where Xn and Yn are complex numbers satisfying the
following algebraic equations:

�!Xn � C�Xn�1 � Xn�1� ��b�n;0�2X0 � Y0�; (7)

�2�b �!�Yn � C�Yn�1 � Yn�1� ��b�n;0�2Y0 � X0�:

(8)

Away from the breather center n � 0, Eq. (5) allows for
the existence of plane waves with the spectrum !q.
Keeping in mind the propagation of waves, we set ! �
!q for some value of q. Thus, the X channel is an open
one, while the Y channel is a closed one; i.e., its frequency
��2�b �!q� does not match the spectrum !q.

Instead of solving Eqs. (7) and (8), we consider a more
general set of equations

�!qXn � C�Xn�1 � Xn�1� � �n;0�VxX0 � VaY0�; (9)

���!q�Yn � C�Yn�1 � Yn�1� � �n;0�VyY0 � VaX0�;

(10)

which is reduced to (7) and (8), if � � 2�b and Vx �
Vy � 2Va � �2�b. For a particular case Va � 0, i.e.,
when the closed Y channel is decoupled from the open
one, the former possesses exactly one localized eigenstate
due to a nonzero value of Vy with the frequency

!�y�
L � ���

���������������������
V2
y � 4C2

q
: (11)

To compute the transmission coefficient T, we use the
transfer matrix method described, e.g., in Ref. [12]. The
boundary conditions are XN�1 � �eiq, XN � �, YN�1 �
D=�, YN � D for the right end of the chain and X�N�1 �
1� �, X�N � eiq � �e�iq, Y�N�1 � F, Y�N � �F for
the left one. Here � and � are the transmission and
reflection amplitudes with T � j�j2 � 1� j�j2. F and
084101-2
D describe the exponentially decaying amplitudes in the
closed Y channel, where the degree of localization is
described by the coefficient � � e�:

� �
1

2C
���!q �

�������������������������������������
���!q�

2 � 4C2
q

�: (12)

The 4� 4 transfer matrix is defined by Eqs. (9) and (10) at
n � 0. After finding the solutions of the corresponding
four linear equations, we obtain

T �
4 sin2q

�2 cosq� a� d2�
2�b��

2 � 4 sin2q
; (13)

a �
�!q � Vx

C
; b �

��!q � Vy

C
; d �

Va

C
:

(14)

This is the central result of this Letter, which allows one
to conclude that total reflection is obtained when the
condition

2� b� � 0 (15)

is realized. It is equivalent to the resonance condition

!q � !�y�
L ; (16)

which has a clear physical meaning: total reflection
occurs when a local mode, originating from the closed
Y channel, resonates with the plane wave spectrum !q of
the open X channel. The only condition is that the cou-
pling between the open and closed channels Va is nonzero.
Remarkably, the resonance position does not depend on
the actual value of Va; i.e., there is no renormalization.
The existence of local modes, which originate from the X
channel for nonzero Vx and possibly resonate with the
closed Y channel, is evidently of no importance.
Equation (13) also yields zero transmission for q � 0; !
due to a vanishing of the group velocity d!q=dq	 sinq
for these q values; we do not focus on these trivial total
reflections.

This resonant total reflection is very similar to the
Fano resonance [9], since it is directly related to a local
state resonating and interacting with the continuum of
extended states. The fact that the resonance location is
independent of the coupling Va is due to the local, single-
site, character of the coupling between the local mode
(originating from the Y channel) and the open channel. If
this coupling has a finite nonzero localization length, i.e.,
several neighboring sites are involved, then the total
reflection happens at an energy which does not neces-
sarily coincide with that of the local state (16) [13]. A
more physical formulation for the condition of absence of
significant renormalizations of the resonance location is
that the wavelength of the propagating wave is large
compared to the extension of the space region where the
channel coupling occurs.
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Returning to the case of a DNLS breather at weak
coupling, we insert the values for �, Vx, Vy, and Va
into (13) and (14) and obtain the following expression
for the transmission coefficient:

T �
4 sin2q

�2�b
C �

�2
b

2C2
�

1�� cosq�
2 � 4 sin2q

: (17)

The result is that any breather solution of the DNLS close
to the anticontinuous limit (the interaction C goes to zero)
provides us with a total reflection in close vicinity of q �
!=2. Indeed, if we expand (17) in C=�b, we obtain

T �
4C4

�4
b

sin22q (18)

in the lowest order, provided C=2�b  j cosqj.
Figure 1 compares a numerically obtained q depen-

dence of the transmission coefficient with (17) for C �
0:01 [14]. We obtain very good agreement, except for a
small shift of the true total reflection position with re-
spect to q � !=2. It is due to the small but nonzero finite
extension of the scattering potential, which leads to a
spread of the coupling between the local mode and the
open channel.

Next, we consider the system of weakly interacting
anharmonic oscillators:

�XXn � �V0�Xn� � C�Xn�1 � Xn�1 � 2Xn�; (19)

where the oscillator potential V possesses one minimum,
V 0�0� � 0 and V 00�0� � 1. The spectrum of small ampli-
tude plane waves is given by !2

q � 1� 4C sin2�q=2� and
discrete breather solutions are time-periodic spatially
localized solutions of Eq. (19) with frequency �b �

!q=m for any nonzero integer m. Here we again consider
a weak interaction between the oscillators (C  1) and
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FIG. 1. Transmission coefficient T for DNLS breather with
C � 0:01 and �b � 1 versus q. Dashed line: numerically exact
result; solid line: analytical result (17). Inset: zoom around
total reflection, where the dotted line marks q � !=2.
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assume that the breather is essentially a single-site ex-
citation X̂X0�t� � X̂X0�t� 2!=�b� � 0 and X̂Xn�0�t� � 0.
The equations for the linearized phase space flow around
the breather solution are then given by [6]

�

n � �
n � C�
n�1 � 
n�1 � 2
n�

� �n;0fV
00�X̂X0�t�� � 1g
0: (20)

For C � 0 we expand V 00�X̂X0�t�� �
P

k vke
ik�bt and use

the Floquet representation 
0�t� �
P

k e0ke
i�!�k�b�t to ar-

rive at the set of equations

� �!� k�b�
2e0k � �

X
k0
vk�k0e0k0 ; (21)

for the site n � 0, at which the breather is excited. This
complete set of linear equations describes the coupling of
the open channel (the corresponding amplitude of oscil-
lations e00) and many closed channels (the amplitudes of
oscillations e0k with k � 0).

To obtain the condition for total reflection, we apply a
procedure which is similar to our analysis of the DNLS
system. We ‘‘turn off ’’ the coupling between the open
channel and the closed channels; i.e., the amplitude e00 is
set to zero in Eq. (21). The remaining homogeneous set of
equations determines the local states !L of closed chan-
nels. The values of ! � !L are those for which the
corresponding determinant vanishes. Moreover, we are
interested in the situation when !2

L � 1, which results in
a resonance of a local mode of the system of closed
channels with the open channel !2

q � 1. It is evident
that such a situation is not necessarily realized for an
arbitrary value of �b. To find the proper value of �b, we
put ! � 1 and scan �b for a given potential V (note that
the parameters vk depend on �b). As a result, we expect
to find a discrete set of �b values, for which the deter-
minant of the reduced set of equations Eq. (21) zeros and a
Fano resonance occurs.

Thus, at variance to the DNLS case, a Klein-Gordon
chain in the anticontinuous limit will provide us with a
total reflection of waves by breathers only for a selected
discrete set of breather frequencies. Increasing the cou-
pling C transforms each of these frequency values into
frequency stripes on the real axis, which will continue to
increase with C. This follows from the fact that the
bandwidth of !q increases linearly with the coupling C,
whereas the shift of the eigenvalues is proportional to C2.

Note here that the Green function technique elaborated
for the wave scattering by DBs in Ref. [6] leads to the
same procedure described above in the limit of small vk,
allowing one to obtain the dependence of !L on the
amplitude and frequency of the DB.

In order to demonstrate the validity of our constructive
approach, we choose

V�x� � 1
2x

2 � 1
3x

3 � 1
4x

4 (22)

and carry out the above procedure. We obtain �b � 1:38.
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FIG. 2. Transmission coefficient versus q for a Klein-Gordon
chain breather with �b � 1:38 and C � 0:001.
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The prediction then is that for small C a breather with �b
close to this value yields a total reflection. The numerical
result for the transmission is shown in Fig. 2 for C �
0:001 [14]. We indeed observe a total reflection around
q � 1, as predicted. We also mention that similar Fano
resonances have been observed numerically for the wave
scattering by breathers in acoustic chains of oscillators
with a nonlinear nearest neighbor interaction (for details,
see [6]).

Our analysis can be directly used for the detection of
Fano resonances in the propagation of linear waves in
weakly dissipative Josephson junction arrays in the pres-
ence of discrete breathers [2,6]. Moreover, our results
allow us to formulate optimal conditions for electronic
transport spectroscopy of molecules, quantum dots, or
optical cavities, coupled to a system of leads. Indeed, a
one-dimensional electronic transport through the local-
ized states in the presence of externally applied micro-
wave radiation of frequency � will display a Fano
resonance (and, correspondingly, zero conductivity) as
the condition EF � �� En is satisfied. Here EF is
the Fermi energy, and En are the localized levels. To
establish this type of a spectroscopy leads should be
quasi-one-dimensional such that only one transversal
mode persists. Then we reduce the lead system to one
open channel. The other important condition is to satisfy
that the wavelength of excitations (e.g., at the Fermi
energy for electronic transport) is large compared to
the spatial extension of the coupling to the localized
states. Additional optional spatial modulations, e.g., in
the leads, may be used to generate artificial gaps in the
electronic spectrum and, thus, to tune the wavelength.
The power of microwave radiation has to be rather small
to exclude the renormalization of En. The coupling be-
084101-4
tween propagating states and localized states may be also
provided by, e.g., spin-spin or spin-orbit interactions. In
this case, zero conductance will be the consequence of a
bare dot state passing the Fermi energy (EF � En).
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