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Ultracold Atom-Atom Collisions in a Nonresonant Laser Field
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Using a recently developed approach for treating the three-dimensional anisotropic scattering we
find considerable influence of a nonresonant laser field with intensity I � 105 W=cm2 on the Cs-Cs
ultracold collisions. Strong dependence on the laser wavelength �L is shown at the optical region as �L
becomes shorter than the critical value �0 � 3000 nm (of the atomic de Broglie wave �) defining the
region �0 � � of the s-wave domination in the absence of the external field. Dependence on the laser
polarization is also essential. The found effect can be applicable for controlling atom-atom interactions
at ultralow temperatures.
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�lm� � 1; 2; . . . ; N] defined on N grid points of the two-
dimensional angular grid r̂rj � f�j;�jg

N for reducing the In fact, by eliminating the scattering amplitude
Ultracold collisions represent a very active research
area at the intersection of several actual themes in atomic,
molecular, and optical physics, and in condensed mat-
ter [1]. One of the important issues here is the study
of possible controlling the atom-atom interaction of
quantum gases for Bose-Einstein condensation (BEC)
created thus far at ultralow temperatures [2]. Thus, sev-
eral groups have discussed different possibilities for
changing the atom-atom scattering length using near
resonant lasers [3], radio frequency fields [4], Feschbach
resonances induced by a magnetic field [5], and static
electric fields [6,7]. However, it was shown [6,7] that in
the presence of an external dc field the problem can be
essentially anisotropic, developing strong coupling of the
s wave with higher partial waves even at the zero-energy
limit. That unusual scattering requires a special numeri-
cal technique.

In this Letter we consider the physics of ultracold
atom-atom collisions in a nonresonant laser field
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� ey� sin�kLr	!Lt�
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where the wave vector kL � kLex � !L=cex � 2�=�Lex
is directed along the x axis and the polarization is defined
by the ellipticity 0 � � � 1. In the quasistatic limit
kL;!L ! 0 (�L ! 1), we approach the case of the con-
stant field E � Eez considered in Refs. [6,7]. In the
present work the influence of the finiteness of the laser
wavelength �L and the laser polarization on the scattering
amplitude is analyzed. At that, we do not use the usual
partial-wave technique. The method was suggested in
Ref. [8] for solving nonseparable two-dimensional scat-
tering problems. Here we extend the scheme to the three-
dimensional scattering problem describing the relative
atom-atom dynamics in an external field. Following [9]
we use the basis of N spherical harmonics Y��r̂rj� [� �
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initial Schrödinger equation to the system of differential
equations
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The values of the wave function  �r� at the grid points of
the angular space  �r; r̂rj� are utilized in the spirit of the
discrete-variable representation [10] or Lagrange-mesh
method [11]. It drastically simplifies the calculations as
against the usual partial-wave analysis. In fact, the atom-
atom interaction V�r�, depending on the interatomic ra-
dius r and the relative atom-atom orientations r̂rj with
respect to the field E, is a diagonal matrix in (2) and the
diagonal elements V�r; r̂rj� are simply the values of the
potential V�r� at the angular grid points. The only non-
diagonal term is the angular part of the kinetic energy
operator (� 1=r2) where the coefficients �Y	1��j are the
matrix elements of the inverse of the matrix Y��r̂rj�. To
the angular grid r̂rj is associated a Gauss quadrature [9].
The high efficiency and flexibility of the scheme have
been developed in calculations of bound states for
strongly anisotropic interections V�r� (the hydrogen
atom in crossed magnetic and electric fields) [9,12].

To solve the scattering problem, we approximate the
radial part of the kinetic energy operator in (2) with the
finite differences and specify the boundary condition at
the right edge of the radial grid r ( � 0; 1; . . . ; m) as

 �rm; r̂rj� � q�k� �rm	1; r̂rj� � g�k; k̂kn� (3)

following the idea of [13] to utilize the scattering asymp-
totic at two last edge points  � m	 1 and m:

f�k; k̂kn; k̂kj� � expf	ikr g �r ; r̂rj�

	 r expfi�kr 	 kr g: (4)
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FIG. 1. The logarithm of the total scattering cross sections
calculated at k � 5:5� 10	6 a:u: (T � 37:4 pK) as a function
of the electric field in the static regime kL � 0 ��L � 1� for
two different interatomic potentials labeled by the value of the
scattering length a0 in the absence of the field. The convergence
with respect to N is shown: N � 9 (dashed curves), N � 25
(solid curves), and N � 49 (open circles). The result of Ref. [6]
(dotted curve) is also given for the case a0 � 	2120 a:u:
(Atomic units are used for cross sections and scattering
lengths.)
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f�k; k̂kn; k̂kj� from two asymptotic equations (4) we obtain
the condition (3) with the coefficients

q�k� � 	 expfik�rm 	 rm	1�g;

g�k; k̂kn� � rm expfikrmg

	 rm	1 expfi�krm	1 � k�rm 	 rm	1�g: (5)

The reduction to the finite-difference boundary-value
problem permits one to apply powerful computational
methods. Specifically, we use LU decomposition which
is stable and efficient in our case. Solving the problem (2)
and (3) for the initial wave vector k � �k; k̂kn� (possible
orientations of k̂k are created by the angular grid k̂kn �
f�n�ng

N
1 ) first we calculate the vector function  �r ; r̂rj�

and then, by using the asymptotic (4), nth row of the
scattering amplitude matrix f�k; k̂kn; k̂kj� describing the
transitions �k; k̂kn� ! �k; k̂kj�, where j � 1; . . . ; N.

We have analyzed with this approach the Cs-Cs ground
state collisions in the laser field (1) using the two-
terms atom-atom potential V�r; r̂rj� � V�r� � VE�r; r̂rj�
with the spherically symmetric field-independent part
V�r� ���!r!1

	C6r	6(�r	 rC� suggested in [14]. The model
potential V�r� was applied for evaluating effects of a
static field in Ref. [6]. It was noted [6] that with this
model one can reproduce the results close to the actual
scattering data and generate a broad spectrum of values
for the scattering length a0 by slightly changing the cut-
off radius rC. For the anisotropic field-dependent inter-
action VE�r; r̂rj� we have used the dipole-dipole induced
interatomic potential [15]

VE�r; r̂rj� � 	
*2�!L�E2

2�1� �2�r3

�
3�z2j � �2y2j �

r2
	 1	 �2

�

� cos�kLxj�fcos�kLr� � �kLr� sin�kLr�g

� (�r	 rC�; (6)

yielding the strong coupling at the large interatomic
separation r! 1. We define the region r � rC of the
potential VE�r; r̂rj� action by the cutoff function (�r	
rC� introduced in Ref. [14] for matching the long-range
part in V�r�. Here we consider a low-frequency nonreso-
nant case with a constant coefficient *�!L� coinciding
with the static dipole polarizability *�0� of the Cs atom
and keep in (6) only the main terms with respect to �kLr�
[15]. (A time average over the period of the laser T �
2�=!L has been performed.)

First, to test the convergence of the scheme and to have
a possibility of direct comparison with the previous cal-
culation [6] we analyze the static regime kL�0 (�L�1),
��0 with the field-dependent part 2VE�r; r̂rj;kL���0�.
We have considered two different model interactions
V�r�(defined by the different rC�: a resonant interaction
generating a0�	2120 a:u: (rC�23:1245 a:u:) and a non-
resonant case with a0�1:98 a:u: (rC�23:19 a:u:). The
total cross sections have been calculated by the numerical
integration over the scattering angles k̂kj and averaging
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over the possible initial orientations k̂kn,

,�k��
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4�

XN
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jfB�k;k̂kn;k̂kj�j
2wnwj;

fB�k;k̂kn;k̂kj�� �1=
���
2

p
��f�k;k̂kn;k̂kj��f�k;k̂kn;	k̂kj�
; (7)

where wn and wj are the weights of a Gauss quadra-
ture. We have symmetrized the amplitude fB to com-
pare with the case of two colliding bosonlike Cs atoms
[6]. The boundary of integration was chosen rather far, at
rm�104 a:u:, to obtain the convergent result for the am-
plitudes at zero-energy limit. The calculations have been
performed on the three-dimensional grids fr ;�j;�jg

m;N
 ;j�1

with N�3�3�9, 5�5�25, and 7�7�49 angu-
lar and m�104 radial grid points defined in [9,16], re-
spectively. The result presented in Fig. 1 demonstrates the
fast convergence over N for both cases with ao�	2120
and 1.98 a.u. in all the range of the field alteration. The
achieved accuracy has the order of �10	4 for f�k;k̂kn;k̂kj�
as N�25. We compare our result with a partial-wave
analysis [6] available for the resonant case a0�
	2120 a:u: Both results converge one to another as N�
25 for all the E�700 kV=cm except the small region E>
600 kV=cm of the strongly anisotropic scattering [6].

In the limiting case of the static field E � Eez the �
variable may be separated. However, for a finite value of
the laser wavelength �L we have the nonseparable three-
dimensional problem. Figure 2 illustrates the analysis
of the Cs-Cs scattering in the presence of the laser field
of intensities I � cE2=�8�� � 1:5� 109 W=cm2 with
varying �L. A rather regular atom-atom interaction
V�r� generating a0 � 1:98 a:u: was considered. It was
found that dependence on the �L becomes essential as
083202-2
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FIG. 2. The dependence of the logarithm of the total cross
section ,�k; kL; I� (a), the scattering length a0�k; kL; I� (b), and
the anisotropy parameter 1�k; kL; I� (c) on the field intensity
I � cE2=8� for a few laser wave numbers kL. The calculations
were performed at k � 5:5� 10	6 a:u: (T � 37:4 pK) and � �
0. (The calculated values are given in atomic units.)
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�L � 2�=kL � 6:28� 104 a:u: �kL � 10	4 a:u:� already
for the fields of intensities I � cE2=�8�� � 105 W=cm2

�E � 15 kV=cm�. Note that we do not use the partial-
wave analysis; i.e., the scattering amplitude f�k; k̂kn; k̂kj� is
calculated directly on the angular grids fk̂kng

N
1 ; fk̂kjg

N
1 .

However, for investigating the anisotropy effects it is
convenient to introduce the s-wave scattering length by
transforming the calculated amplitude to the conven-
tional lm representation

a0�k� � 	 �1=�4
���
2

p
��


�
XN
n;j

fB�k; k̂kn; k̂kj�Y00�r̂rn�Y�
00�r̂rj�wnwj ���!k!0

a0

(8)

and the anisotropy parameter 1�k;kL;I��8�a20�k;kL;I�=
,�k;kL;I� such that 1!1 as I and k!0. The calculated
a0�kL;I� and 1�kL;I� are presented in Figs. 2(b) and 2(c).
They show that the singularity developed in Fig. 2(a) in
the total cross section at the field I�8:66�108 W=cm2

�Er�570 kV=cm� is the s-wave resonance. It is also
shown that with increasing kL (decreasing �L) the
s-wave width of the resonance becomes more narrow,
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but the total width remains practically unchanged due
to increasing anisotropic effects.

Figure 3 presents the result of the analysis of the
critical region � � �0 (k � k0 � 2�=�0) for the atomic
de Broglie wavelengths � where the Cs-Cs scattering is
isotropic ,�k� � 8�a0 �1�k� � 1
 in the absence of the
external field (I � 0). Applying the field of intensity I >
105 W=cm2 alters the scattering dramatically: it becomes
strongly anisotropic [1�k; kL; I�< 1] even in the region
k� k0 ’ 10	4 a:u: (�� �0 ’ 6:28� 104 a:u:) where the
s wave dominates at I� 0. The anisotropy parameter
1�k;kL; I� can be changed by varying the laser parame-
ters (I and �L) but remains, nevertheless, a constant,
k-independent value in this specific region. Thus, the
s-wave scattering length approximation does not work
even for the zero-energy limit in the presence of a laser
radiation for the special field intensities and the wave-
lengths. We already noted that the special effect of the
strong lm coupling at zero-energy limit has been dis-
cussed in [6] for a static field. However, this regime
demands an application of rather intense static (or quasi-
static laser) fields: �1–3� 105 V=cm (� 107–108 W=cm2)
(see Figs. 1 and 2 and Ref. [6]). Figure 2 demonstrates that
with decreasing the length �L of the laser wave the
demand on the field intensity becomes essentially less
strong E� 104 V=cm (I� 105 W=cm2).

It should also be noted that the dependence on the �L
becomes considerable already for rather long waves with
�L � 105 a:u: (kL � 10	4 a:u:) (see Fig. 2). It is, however,
not surprising because the wavelength �L of the laser
radiation specifies the length of ‘‘modulation’’ of the
long-range part (6) of the atom-atom interaction defining
the scattering at ultralow energies. Thus, by decreasing
the modulation length one can violate the quasistatic re-
gime as�L approaches and becomes shorter the de Broglie
wavelength �. Figure 2 illustrates the ultracold collisions
with � � 1:14� 106 a:u: where the quasistatic regime is
considerably violated as �L becomes shorter 2�=kL ’
105 a:u: Note also that the critical laser wavelength
�105 a:u: is close to the critical de Broglie wavelength
083202-3
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�0 � 2�=k0 ’ 2�� 104 a:u: ’ 3300 nm defining the
range of the s-wave domination as I � 0 (see Fig. 3).

Figure 4 demonstrates strong dependence of the differ-
ential Cs-Cs cross sections on the laser polarization for
the chosen I and �L. Here the averaging over the possible
initial orientations of the interatomic axis was performed.
The calculation has been done for the laser propagation
along the z direction. In this case, by changing from the
linear (��0) to the circular (��1) polarization the �
dependence in the scattering is excluded. The anisotropy
effects are less important for the circular polarization
(��1). The differential cross section has two weak
maximums (of the order of a few percent above the
mean value) in the direction of the laser propagation
(z axis) and on the plane of the polarization (���=2).
With decreasing � we observe the appearance of a new
structure over the � variable. The maximum anisotropy
is developed for the linear polarization (��0). The
differential cross section is changing here from zero up
to a maximal value about 300 a.u. in the direction of
polarization (x axis). However, in spite of this strong
anisotropy the correspondent total cross section deviates
from the field free case only by a factor of 1.8 and the
anisotropy parameter is equal 1�0:613 (see Fig. 2).

The performed analysis shows that applying a non-
resonant optical laser with intensities I � 105 W=cm2

one can change essentially the Cs-Cs scattering ampli-
tude at ultracold collisions. At that, the usual scattering
length approach fB�k; k̂kn; k̂kj� � 	a0 does not work (ex-
cept the regions of s-wave resonances) and one has to
analyze the stability of BEC for unusual behavior of the
amplitude fB�k; k̂kn; k̂kj� � fB�k̂kn; k̂kj�. Figure 4 illustrates
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that the amplitude may be strongly dependent on the
relative atom-atom orientation with respect to the field
and even changes the sign at some scattering angles. It
would be interesting to include this effect into the theo-
retical models for BEC. We suppose that experimental
investigations of the ultracold atom-atom collisions in
the presence of intense optical lasers would be also valu-
able, maybe opening new physics here. Note also that
earlier calculations [3] of the resonant laser effects in
ultracold atom-atom collisions were limited by the
framework of the s-wave scattering length and, with
increasing the laser intensity, has to be extended to in-
clude important anisotropic effects.
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