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Classifying N-Qubit Entanglement via Bell’s Inequalities
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All the states of N qubits can be classified into N � 1 entanglement classes from 2-entangled to
N-entangled (fully entangled) states. Each class of entangled states is characterized by an entanglement
index that depends on the partition of N. The larger the entanglement index of a state, the more
entangled or the less separable is the state in the sense that a larger maximal violation of Bell’s
inequality is attainable for this class of state.
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holds true for all testing observables A�0	 � ~aa�0	 
 ~��A and
nated from one another by the averages of the MK poly-
nomials defined as
Bell’s inequalities [1] were initially dealing with two
qubits, i.e., two-level systems. They ruled out various
kinds of local hidden variable theories. Recently with
the emergence of the field of quantum information where
the entangled states are essential, Bell’s inequalities pro-
vide also a necessary criterion for the separability of
2-qubit states. This is because Bell’s inequalities are
observed by all separable 2-qubit states. For pure states
Bell’s inequalities are also sufficient for separability [2].
The more entangled the state, the larger is the maximal
violation of Bell’s inequalities.

On the one hand, Bell’s inequalities were generalized to
N qubits [3–5], whose violations provide a criterion to
distinguish the totally separable states from the entangled
states. On the other hand, with the experimental realiza-
tion of multiparticle entanglement [6], Bell’s inequalities
in terms of the Mermin-Klyshko (MK) polynomials [3,7]
were generalized to the case of N � 3 for the detection of
fully entangled 3-qubit states [8] and to the N-qubit case
for the detection of fully entangled N-qubit states [9,10].
And these results about full entanglement are inferred by
the quadratic Bell inequalities [11].

In this Letter we provide a detailed classification of
various types of N-qubit entanglement from total separa-
bility to full entanglement based on the amount of viola-
tion of Bell inequalities. It turns out that an entanglement
index can be defined to characterize the entanglement
class. Before presenting our classification of N-qubit en-
tanglement we first review the classification of 2-qubit
and 3-qubit entanglement by Bell’s inequalities.

Quadratic Bell’s inequalities for 2-qubit system.—First
let us consider a system of two qubits labeled by A and B.
There are only two types of states, separable or entangled.
If a 2-qubit state � is separable, i.e., a pure product state
or a mixture of pure product states, the well-known Bell-
CHSH (Clauser, Horne, Shimony, and Holt) inequality
[12]

hAB� AB0 � A0B� A0B0i� � 2 (1)
0031-9007=03=90(8)=080401(4)$20.00 
B�0	 � ~bb�0	 
 ~��B. Here �A and �B are the Pauli matrices for
qubits A and B, respectively; the norms of the real vectors
~aa�0	; ~bb�0	 are equal to 1; hABi� � Tr��AB	 denotes the
average of the observable AB in the state � as usual.

If the state � is entangled, then the upper bound of the
average of the Bell operator is 2

���
2

p
[13], which is attain-

able for maximally entangled states. For the present
purpose this upper bound is expressed more properly in
a quadratic form of Bell’s inequality [11]

hXi2� � hYi2� � 4 (2)

in terms of two observables X � A0B� AB0 and Y �
AB� A0B0 instead of one Bell operator X� Y. This in-
equality is satisfied by all 2-qubit states, entangled or
separable. For separable states the Bell-CHSH inequality
(1) can also be equivalently expressed as

jhXi�j � jhYi�j � 2 (3)

in terms of observables X and Y because of the arbitrari-
ness of the testing observables A�0	 and B�0	.

To summarize, there is only one entanglement class of
2-qubit states, i.e., 2-entangled states. For the separable
states the Bell-CHSH inequality is observed while for the
entangled states the Bell-CHSH inequality can be vio-
lated. By regarding hXi� and hYi� as two axes of a plane,
respectively, we can put all the results known so far in a
diagram as shown in Fig. 1.

Classification of 3-qubit entanglement.—Now we
consider three qubits labeled by A, B, and C. There
are three types of 3-qubit states: (i) totally separable
states denoted as �13	 � fmixtures of states of form�A �
�B � �Cg, (ii) 2-entangled states denoted as �2;1	 �
fmixtures of states of form�A ��BC;�AC��B;�C��ABg,
and (iii) fully entangled states denoted as �3	 � f�ABCg
including the Greenberger-Horn-Zeilinger (GHZ)
state [14].

These three types of 3-qubit states can be discrimi-
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FIG. 2 (color online). Classification of 3-qubit entanglement.
Separable states reside inside the square while the 2-entangled
states are bounded by the smaller circle. If the averages of F3

and F0
3 in one state are outside the smaller circle, then the state

is fully entangled.

FIG. 1 (color online). All separable states lie in the inner
square jhXi�j � jhYi�j � 2 while a general 2-qubit state,
whether separable or not, is bounded by a circle hXi2� � hYi2� �
4 instead of the dashed square jhXi�j � jhYi�j � 2

���
2

p
.
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F3 � �AB0 � A0B	C� �AB� A0B0	C0; (4a)

F0
3 � �AB0 � A0B	C0 � �AB� A0B0	C; (4b)

where C and C0 are two observables of the third qubit
defined similarly to A and B. In fact, for totally separable
states the Bell-Klyshko inequality reads

maxfjhF3i�j; jhF
0
3i�jg � 2 if � 2 �13	; (5)

whose violation ensures a nonseparable state which can be
either a 2-entangled state or a fully entangled state. The
maximal violation is different for 2-entangled states and
fully entangled states [11]

hF3i
2
� � hF0

3i
2
� � 23 if � 2 �2; 1	; (6a)

hF3i
2
� � hF0

3i
2
� � 24 if � 2 �3	: (6b)

Therefore the violation of inequality Eq. (6a) ensures a
fully entangled state.

In summary, there are two different entanglement
classes of 3-qubit states, namely, 2-entangled states and
fully entangled states. Every class of entangled states can
give rise to a different violation of the Bell-Klyshko
inequality. We can put all these known results into a
diagram as Fig. 2 by regarding the averages of observ-
ables F3 and F0

3 as two axes of a plane.
Classification of N-qubit entanglement.—Now we turn

to the classification of N-qubit states. The number of the
types of N-qubit states is the same with the number of all
partitions � ~nn	 � �n1; n2; . . . ; nN	 of N with ni �i �
1; . . . ; N	 being integers such that

XN

i�1

ni � N; �N � n1 � n2 � . . . � nN � 0	: (7)

In fact, the partition � ~nn	 is in a one-to-one correspond-
ence with the types of states that are mixtures of states
�n1 � �n2 � 
 
 
 � �nN , where �ni is a fully entangled state
of any ni qubits �i � 1; . . . ; N	 [15]. Therefore we can
label different types of N-qubit states by different parti-
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tions of N. For example, the partition �N	 corresponds
to the fully entangled states while the partition
�1; 1; . . . ; 1	 � �1N	 corresponds to the totally separable
states. As a result the number of different types of N-qubit
states is also the number of all the irreducible representa-
tions of the permutation group with N elements. This is
not a coincidence because the types of the states as well as
the MK polynomials defined below are invariant under
the permutations of qubits.

To classify all types of N-qubit states, we employ the
MK polynomials for the system of the N qubit. If we
define F2 � X� Y and F0

2 � X� Y the MK polynomials
are defined recursively as

FN � 1
2�DN �D0

N	FN�1 �
1
2�DN �D0

N	F
0
N�1 (8)

for N � 3, where DN and D0
N are observables of the Nth

qubit and FN and F0
N are MK polynomials for the �N � 1	

qubit. And observable F0
N is defined similarly to FN with

the primed and unprimed observables interchanged. The
averages of these two observables in totally separable
states satisfy the Bell-Klyshko inequality

maxfjhFNi�j; jhF
0
Ni�jg � 2 if � 2 �1N	: (9)

As we will see immediately some types of states are
more entangled than other types in the sense that a larger
violation of this inequality is attainable. And the upper
bound of the violation of the state in � ~nn	 is related to the
entanglement index defined as

EN� ~nn	 � N � K1� ~nn	 � 2L� ~nn	 � 2; (10)

where L� ~nn	 is the number of entries in � ~nn	 that are greater
than or equal to 2 and K1� ~nn	 is the number of entries in � ~nn	
that are equal to 1, i.e., the number of separated single
qubits. Here the totally separable states are excluded, i.e.,
K1 <N. In other words, N � K1� ~nn	 is exactly the number
of entangled qubits while L� ~nn	 is exactly the number
of groups into which the entangled N � K1 qubits
are divided with each group of qubits fully entangled.
080401-2



FIG. 3 (color online). Classification of N-qubit entanglement.
While all separable states are bounded in the square, the states
of type � ~nn	 are bounded within a circle of a radius RN �
2�EN � ~nn	�1�=2. The largest circle with a radius of 2�N�1	=2 corre-
sponds to the fully entangled states.
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Obviously the entanglement index is an integer satisfying
2 � EN� ~nn	 � N.

For example, in the case of N � 4 we have
five partitions, therefore five types of states: (i) fully
entangled 4-qubit states �4	 with L�4	 � 1, K1�4	 � 0,
and E4�4	 � 4; (ii) states of a group of a fully entangled
3-qubit and a separated single qubit �3; 1	 with L�3; 1	 �
1, K1�3; 1	 � 1, and E4�3; 1	 � 3; (iii) �2; 2	 stands for
the states of two groups of an entangled 2-qubit
with L�2; 2	 � 2, K1�2; 2	 � 0, and E4�2; 2	 � 2; (iv)
�2; 1; 1	 � �2; 12	 corresponds to the state of an entangled
2-qubit together with two separated qubits with
L�2; 12	 � 1, K1�2; 12	 � 2, and E4�2; 12	 � 2; (v)
�1; 1; 1; 1	 � �14	 corresponds to the totally separable
states with L�14	 � 0, K1�14	 � 4, and E4�14	 � 2.

According to the entanglement index all the N-qubit
states can be classified into N entanglement classes:
the class of totally separable states S1 and the class of
E-entangled states �E 2 SE �E � 2; . . . ; N	, which are
mixtures of entangled states with the same entanglement
index E:

�E �
X

EN� ~nn	�E

p� ~nn	�n1 � �n2 � 
 
 
 � �nN ; (11)

where the summation is over all states corresponding to
the same partition and all partitions with the same en-
tanglement index E and p� ~nn	 is a probability distribution.
One can also define a separability index as SN� ~nn	 �
2L� ~nn	 � K1� ~nn	 with SN � EN � N � 2. An E-entangled
state is also an S-separable state. The separability index
SN can be regarded as the effective number of qubits that
can realize the partition � ~nn	 since there are at least two
qubits in each group of fully entangled qubits. Now we
are ready to present our main result.

Classification Theorem: The N-qubit states are classi-
fied into N � 1 entanglement classes and the E-entangled
states satisfy the following quadratic Bell inequality:

hFNi
2
� � hF0

Ni
2
� � 2E�1 if � 2 SE: (12)

Therefore the larger the entanglement index, the larger is
the maximal violation of the Bell-Klyshko inequality. In
this sense the larger the entanglement index, the more
entangled or the less separable is the state.

We postpone the proof to the next section. The upper
bound of the inequality for the E-entangled states is
attainable for the pure state of type �n1; n2; . . . ; nN	 that
is a product of maximal entangled states for ni qubits
where for ni � 3 the maximal entangled state is chosen as
the GHZ state and for ni � 2 the maximal entangled state
is chosen as one of the Bell states. The two testing
observables for each qubit can be simply chosen as �x
and �y.

The largest entanglement index EN�N	 � N is reached
by the partition �N	. Therefore the N-entangled states
or fully entangled states can be distinguished from
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other classes of states by Bell’s inequality. The
�N � 1	-entangled states are states of one group of en-
tangled N � 1 qubits and a separated single qubit. The
�N � k	-entangled states are states of a group of fully
entangled �N � k	 qubits and a group of fully entangled
k qubits with k � 2. Thus the states with different k have
the same property of nonseparability. The least entangle-
ment index is possessed by the 2-entangled states.

We notice that when K1 � 0 there is no separated qubits
and the more entries in the partition � ~nn	, i.e., the more
groups into which the entangled qubits are divided, the
more separable is the state. Conversely for states with
larger entanglement index, the N qubits are divided into
less groups of fully entangled qubits.

The classification of N-qubit entanglement can also be
put into a diagram as in Fig. 3 by regarding the average of
FN and F0

N as two axes of a plane. Here N � 1 circles and
one square are the boundary for all kinds of N-qubit
entanglement.

Proof of the theorem.—At first we notice that the
theorem is true when N � 3 where we have E3�3	 � 3
and E3�2; 1	 � 2. Since an E-entangled state �E of N
qubits is a convex mixture of states in � ~nn	 with the
entanglement index EN� ~nn	 � E, it is enough to prove
the inequality in the theorem for a general state � corre-
sponding to the partition � ~nn	. For convenience we denote
BN� ~nn	 � hFNi

2
� � hF0

Ni
2
�. Further if the smallest entry of

partition � ~nn	 is k � 1 then we denote � ~nn	 � � ~nnk; k	, where
� ~nnk	 is a partition of N � k whose smallest elements are
greater or equal to k.

If the state � is of type � ~nn1; 1	, then there is at least one
separated single qubit. Because the MK polynomials are
symmetric under the permutation of qubits, it is enough to
suppose that the Nth qubit is separated. From the defini-
tion Eq. (8) of the MK polynomials we obtain
080401-3
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BN� ~nn1; 1	 �
1
2�hDNi

2
� � hD0

Ni
2
�	BN�1� ~nn1	 � BN�1� ~nn1	:

(13)

Obviously this inequality is attainable. If the state � is of
type � ~nnk; k	 with k � 2, then there is at least one group of
a fully entangled k-qubit. Without loss of generality we
suppose the last k qubits are separated from other N � k
qubits. By rewriting the MK polynomial as [4]

FN � 1
4�FN�k�Fk � F0

k	 � F0
N�k�Fk � F0

k	�; (14)

where Fk and F0
k are MK polynomials for the last k qubits

and FN�k and F0
N�k are MK polynomials for the remain-
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ing N � k qubits, we obtain

BN� ~nnk; k	 �
1
8Bk�k	BN�k� ~nnk	 � 2k�2BN�k� ~nnk	; (15)

where we have used the quadratic Bell inequality for the
fully entangled k-qubit state Bk�k	 � 2k�1 [11], which is
attainable for the GHZ state for k qubits. Therefore the
above inequality is also attainable.

By denoting Kk as the number of k’s as entries of the
partition � ~nn	, we can rewrite the partition as � ~nn	 �
�MKM

; . . . ; 2K2
; 1K1

	, where M is the largest entry of � ~nn	.
As a result
BN� ~nn	 � BN�M;MKM�1; �M� 1	KM�1
; . . . ; 3K3

; 2K2
; 1K1

	 � 2K3�3�2	2K4�4�2	 
 
 
 2KM�1��M�1	�2�2�KM�1	�M�2	BM�M	

� 23�
P

M
k�3

Kk�k�2	 � 2N�3�2L�K1 � 2EN� ~nn	�1; (16)
where identities N �
P

M
k�1 kKk and L �

P
M
k�2 Kk have

been used. The first inequality is a consequence of apply-
ing inequality Eq. (13) K1 times and Eqs. (15) Kk times
for k � 3; 4; . . . ;M� 1 and KM � 1 times when k � M.
The second inequality stems from the quadratic Bell’s
inequality for fully entangled M-qubit states. Since all the
inequalities in the proof are attainable, the upper bound
for the E-entangled states is also attainable.

Conclusions and discussions.—In this Letter we have
provided a classification of N-qubit entanglement by in-
troducing the integer entanglement index EN . Some or-
ders have been established among various types of
N-qubit entanglement: the larger the entanglement index,
the larger maximal violation of the Bell’s inequality is
attainable and therefore more entangled or less separable
is the state.

However, our classification is far from being complete
regarding the following two connected aspects. First, as
Bell’s inequality provides only a sufficient criterion for
the entanglement, the hierarchy of quadratic Bell inequal-
ities for different classes of entangled states is sufficient
for the detection of E entanglement. Second, within one
entanglement class there may exist states with different
types of entanglement. These differences obviously can-
not be detected by Bell’s inequalities in terms of MK
polynomials discussed here. By finding some observables
other than the MK polynomials that are less symmetric,
one may give a finer classification of N-qubit entangle-
ment. It will be of interest to find some criteria to dis-
criminate such degeneracy of the entanglement class.
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Note added.—After the submission of the present work
we became aware of the Letter by Nagata et al. [16], in
which the same inequality (12) is proved. While this
inequality was mainly employed to detect full entangle-
ment in Ref. [16], we use the the same inequality to
classify quantitatively all kinds of entanglement.
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