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Number of Loops of Size h in Growing Scale-Free Networks
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The hierarchical structure of scale-free networks has been investigated focusing on the scaling of the
number Nh�t� of loops of size h as a function of the system size. In particular, we have found the
analytic expression for the scaling of Nh�t� in the Barabási-Albert (BA) scale-free network. We have
performed numerical simulations on the scaling law for Nh�t� in the BA network and in other growing
scale-free networks, such as the bosonic network and the aging nodes network. We show that in the
bosonic network and in the aging node network the phase transitions in the topology of the network are
accompained by a change in the scaling of the number of loops with the system size.
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growing SF network models, such as the bosonic network
(BN) model [21] and the aging nodes (AN) model [22].

new node k is linked to two existing nodes i and j times
the probability Ph�2�t� that they are already connected
Natural and social systems ranging from protein-
protein interactions [1] to the World Wide Web [2] can
be represented as scale-free (SF) networks [3–6], that is,
sets of nodes connected by links with special statistical
properties. These systems are characterized by large fluc-
tuations in the individual degrees, i.e., in the number of
links pointing or leaving each node. In a SF network, the
statistical distribution P�k� of the degree k is a power law
P�k� � k��. Accordingly, if � < 3, the individual degree
distribution displays infinite variance in the limit of infi-
nite network size.

Besides this striking property, models traditionally
defined on regular lattices display peculiar effects when
defined on a scale-free topology instead [7–12]. Such
phenomena have increased the interest in finding univer-
sal mechanisms to generate SF networks, which seem to
arise independently in so diverse contexts.

Recently, these properties have been reproduced by the
Barabási-Albert (BA) dynamical model of a random
network. Its simple and natural algorithm, based on a
‘‘preferential attachment’’ rule [2,13], triggered an ava-
lanche of research activity in the field and generated a
rich ‘‘zoology’’ of SF network models sharing the same
fundamental ingredients. Though recently alternative
mechanisms [14,15] for the generation of scale-free
networks have been proposed, in this work we restrict
our attention to growing scale-free networks with prefer-
ential attachment. But the degree distribution is not the
only relevant topological quantity. For the characteriza-
tion of networks it is necessary to look at the motifs
[16–18] recurrent on them and, in particular, at the num-
ber of loops of length larger than 3 [19]. In this work we
derive a general formula for the number of loops of size h
that generalizes the known result concerning triangular
loops [20] (h � 3) for a BA network. In particular, we find
that the number of loops Nh�t� of size h at time t in a BA
network scales as Nh�t� � �m=2 log�t�� . In addition, we
show that our formula is robust when tested on other
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In the bosonic network the scaling of the number of loops
with the system size changes below the Bose-Einstein
phase transition, where a power-law scaling of the type
Nh�t� � t� takes place.

The BA model [2,13] was the first and simplest algo-
rithm generating scale-free undirected networks. In this
model, a new node is added to the network at each time
step, and it is connected by a fixed number of links m to
highly connected existing nodes (preferential attach-
ment). According to this rule, the probability �i that an
existing node i at time t acquires a new link is assumed to
be proportional to its degree ki�t�. This reads

�i � m
ki�t�P
j kj�t�

: (1)

The model can be analyzed by a mean field approxima-
tion [2]. By this approach, one finds that the average
degree of a node i that entered the network at time ti
increases with time as a power law

ki�t� �
m
2

����
t
ti

s
: (2)

A network built in this way displays a power-law degree
distribution P�k� � k�3. In order to investigate the inho-
mogeneous topology of the network, we define a loop of
size h (an h loop) as a closed path of h links that visits
each intermediate node only once.

In the case m > 2, the BA scale-free network is a very
compact network, with loops of any size. As the network
evolves, new loops are introduced in the network. By
definition, new loops include the newly added node: in-
deed, a new h loop is formed if the new node is connected
to two nodes already connected by a self-avoiding path
of size h� 2. We indicate with pi;k the probability that
the nodes i; k, attached to the network at time ti; tk, are
connected by a link. The rate at which new loops of
length h are formed is given by the probability that the

i;j
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by a self-avoiding path of size h� 2. Therefore, we write
the following rate equation for the average number of h
loops Nh�t�:

@hNh�t�i
@t

�
1

2

XN
i�1

XN
j�1

pi;kpj;kPh�2
ij �t�; (3)

where the factor 1
2 takes into account that each pair of

nodes i; j has been counted twice in the sums.
On the other hand, two directly connected nodes i and j

belong to an h loop if they are also connected by a self-
avoiding path of length h� 1. Let Ph�1

i;j �t� be the proba-
bility that this path exists; the total number of h loops
passing through node i is given by

PN
j�1 pi;jP

h�1
i;j �t�.

We obtain the average number hNh�t�i of h loops in the
system times 2h by summing this quantity over all the
nodes i in the network. In fact, each loop has been counted
2h times, because there are h nodes in the loop, and two
possible directions. Hence, we can write

hNh�t�i �
1

2h

XN
i�1

XN
j�1

pi;jPh�1
ij �t�: (4)

By replacing Eq. (2) in Eq. (1), the probability that the
node i is attached to node k is

pi;k �
m
2
�1=

�������
titk

p
�: (5)

Moreover, the probability that a node k is connected
with nodes i and j is proportional to the probability that
i and j are already connected, i.e.,

pi;kpj;k � m
1

2tk
pi;j: (6)

By replacing this result in (3) and by the definition (4), we
obtain

@hNh�t�i
@t

�
m
2t
�h� 1�hNh�1�t�i: (7)

Consequently, the rate at which new loops of size h are
introduced in the system is proportional to the mean
number of loops of size h� 1.

Equation (7) has a recursive structure that allows its
integration without any detailed information about the
probabilities Phi;j�t�. In fact, the rate at which new loops of
length h are formed can be expressed only in terms of the
number of loops of minimal size (i.e., h � 3),

@h�3hNh���i

@�h�3
� �h� 1�!hN3���i (8)

with � � m
2 log�t�. The number of triangular loops hN3���i

can be computed directly, for the triangular loops in-
crease in time following (3),

@hN3�t�i
@t

�
1

2

XN
i�1

XN
j�1

pi;kpj;kpi;j: (9)
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Since pi;j is given by Eq. (5), approximating sums by
integrals we write the rate equation in the form

@hN3�t�i
@t

�
1

2

�
m
2

�
3Z t

0
dti

Z t

0
dtj

1

ti

1

tj

1

t

�
1

2

�
m
2

�
31

t
�log�t��2: (10)

Integrating (10) we find, in agreement with [20],

hN3�t�i �
1

3!

�
m
2
log�t�

	
3
: (11)

Using Eq. (11) in Eq. (8), we compute the number of
loops of size h, hNh�t�i and we find

hNh�t�i �
�
m
2
log�t�

	
h
�1�O���1�� �

�
m
2
log�t�

	
h
: (12)

The expression for the scaling of Nh�t� with the system
size t in a BA network does not suggest a practical way to
measure Nh�t�. To this purpose, one has to study the
symmetrical adjacency matrix a of the network, whose
generic element aij is defined by aij � 1 if i and j are
connected and aij � 0 otherwise. Knowing this matrix,
one directly measures the number of paths starting from a
node i and returning on it after h steps that visit inter-
mediate nodes only once. According to this argument, the
term Nh�t� has a dominating term of the typeP
i�a

h�i;i=�2h� and subdominant terms excluding all triv-
ial contributions coming from paths intersecting on them-
selves. Let us assume that the network does not contain
self-loops; i.e., aii � 0 for all i of the network. In this
case, for h � 3 we simply have

N3 �
1

6

X
i

�a3�ii: (13)

For h � 4 and h � 5, by simple arguments it is possible to
show that

N4 �
1

8

�X
i

�a4�ii � 2
X
i

�a2�ii�a2�ii �
X
i

�a2�ii

	
(14)

and that

N5 �
1

10

�X
i

�a5�ii � 5
X
i

�a2�ii�a3�ii � 5
X
i

�a3�ii

	
: (15)

Using relations (13)–(15), we can directly measure Nh�t�
for h � 3; 4; 5 in the BA scale-free network model to
check our analytical results.

In Fig. 1 we show that the scaling of Nh�t� for a BA
network with m � 2 follows

Nh�t� �
�
m
2
log�t�

�
 �h�

: (16)

The measured effective exponent  �h� reported in the
inset of Fig. 1 grows with h as expected. Nevertheless,
 �h� differs from the predicted asymptotic behavior
 �h� � h in a significant way. This can be explained
078701-2
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FIG. 2. Scaling of the number of loops Nh�t� of size h with
the system size t in the FGR and in the BE phase of a bosonic
network. The plotted data have been obtained for a network
with p��� � 2� and � 2 �0; 1� (which has Tc � 0:7 [19]) at T �
1:5 (FGR phase) and at T � 0:5 (BE phase). In the insets we
report the value of the exponents  (2.6, 3.9, 5.2) and � (0.78,
1.28, 156) found in the simulations for h � 3; 4; 5, respectively.
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FIG. 1. Scaling of Nh�t� as a function in a BA network for t
up to t � 104. The inset shows the values of the measured
exponent  defined in (16) for h � 3; 4; 5.
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by the fact that we are considering networks of size up to
t � 104 nodes and we are still far from the asymptotic
behavior t! 1.

To check the robustness of the scaling relations of
Nh�t�, we have measured the number of loops of size h �
3; 4; 5 in two alternative growing SF network models: the
bosonic network [21] and the aging nodes network [22].

In the bosonic network, each node i is assigned an
innate quality, represented by a random ‘‘energy’’ �i
drawn from the probability distribution p��i�. The attrac-
tiveness of each node i is then determined jointly by its
connectivity ki and its energy �i. In particular, the proba-
bility that node i acquires a link at time t is given by

�i �
e���iki�t�P
j e

���jkj�t�
; (17)

i.e., low energy, high degree nodes are more likely to
acquire new links. The parameter � � 1=T in �i tunes
the relevance of the quality with respect to the degree
in the acquisition probability of new links. Indeed, for
T ! 1 the probability �i does not depend anymore on
the energy �i and the BN model reduces to the BA model.
On the other hand, in the limit T ! 0 only the lowest
energy node has nonzero probability to acquire new links.
Moreover, in Ref. [21] it has been shown that the con-
nectivity distribution in this network model can be
mapped on the occupation number in a Bose gas.
According to this analogy, one would expect a corre-
sponding phase transition in the topology of the network
at some temperature value Tc.

In fact, for energy distributions such that [p��� ! 0
for �! 0], one observes a critical temperature Tc. For
T > Tc the system is in the ‘‘fit-get-rich’’ (FGR) phase,
where nodes with lower energy acquire links at a higher
rate than higher energy nodes, while for T < Tc a ‘‘Bose-
Einstein condensate’’ (BE) or ‘‘winner-takes-all’’ phase
emerges, where a single node grabs a finite fraction of all
the links. We simulated this model assuming
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p��� � ��� 1��� and � 2 �0; 1�; (18)

where � � 1. For this distribution, it has been shown that
Tc�� � 1� � 0:7 [21]. In particular, in Fig. 2 we report
Nh�t� for h � 3; 4; 5 as a function of the number of nodes t
in the network, at temperature T � 1:5 and T � 0:5,
respectively.

According to simulations, in correspondence with the
phase transition, the scaling of Nh�t� drastically switches
from a BA-like behavior

Nh�t� /
�
m
2
log�t�

�
 �h�

for T > Tc (19)

to a power-law scaling

Nh�t� / t��h� for T < Tc: (20)

We have measured the scaling of Nh�t� with the system
size t also for a growing network with aging nodes
introduced in [22]. The model has been motivated by
the observation that in many real networks, e.g., the
scientific citations network, old nodes are less cited than
recent ones. In the goal of representing this feature, the
probability �i to attach a link to a node i arrived in the
network at time ti is modified to be

�i �
�t� ti���ki�t�P
j�t� tj���kj�t�

; (21)

where � is an external parameter. As in the BA model,
a new node is connected to m existing nodes. The result-
ing structure of such a network strongly depends on the
constant �. For �< 1, the degree distribution is a power-
law P�k� � k�� with an exponent monotonically increas-
ing from � � 2 in the limit �! �1 to �! 1 in the
limit �! 1: on the other hand, for� > 1 no power law is
observed in the degree distribution. Therefore, this model
reproduces a SF network only in the region � > 1.
078701-3
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FIG. 3. The order parameter kmax=mt for a network with
aging of the nodes, size t � 104 and m � 2. We distinguish
among three regions of the phase space: � > 1, � 2 ��1; 1�,
and �<�1. In the insets we report the typical behavior of
Nh�t� as a function of t for h � 3; 4; 5 in the three regions.
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Moreover, as observed in [22], in the limit �! �1
the oldest node is connected to an increasing fraction
of all the links, reminding the condensation observed
in a bosonic network. To take into account this phenome-
non, we introduce a value �� such that for �< �� the
fraction of links attached to the most connected node
exceeds a finite threshold F. We expect the scaling of
Nh�t� to be different in the three regions � > 1, � 2
���; 1�, and �< ��.

We measured the total fraction of links kmax=mt at-
tached to the oldest node in a network with m � 2 and
t � 104 nodes. The threshold has been fixed at F � 0:1, in
order to distinguish the ‘‘condensate’’ phase from the
simple scale-free phase. The value for �� was found to
be �� � �1. We then measured the number of loops of
size h � 3; 4; 5 for networks made of up to 104 nodes in
the three ranges of value of �. We have observed that, for
� > 1, the number of loops of size h scales linearly
with t (at least for h � 3; 4; 5). In inset (a) of Fig. 3 we
report the data for � � 1:5. On the contrary, for � 2
����; 1� we measured the scaling

Nh�t� /
�
m
2
log�t�

�
 �h�

(22)

with  �h� a monotonic function of h. In inset (b) of Fig. 3,
data for � � 0:5 are reported. Finally, in the region �<
�� � �1, Nh�t� becomes proportional to a power law of
the system size, as is shown in inset (c) of Fig. 3, referring
to the case � � �5.

In conclusion, we have introduced the number of h
loops Nh�t� for a network of t nodes as a characterizing
quantity for random networks. We have observed that in
the BA scale-free networks Nh�t� scales as a power law of
078701-4
the logarithm of the system size. Moreover, we have
observed that indeed this scaling seems to be a marking
feature of growing scale-free networks with preferential
attachment. In particular, topological phase transitions in
the bosonic network and in the network including aging
nodes are accompanied by a drastic change in the scaling
of Nh�t� with the system size.
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