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Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens
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The time evolution of evanescent modes in Pendry’s perfect lens proposal for ideally lossless and
homogeneous, left-handed materials is analyzed. We show that time development of subwavelength
resolution exhibits universal features, independent of model details. This is due to the unavoidable near
degeneracy of surface electromagnetic modes in the deep subwavelength region. By means of a
mechanical analog, it is shown that an intrinsic time scale (missed in stationary studies) has to be
associated with any desired lateral resolution. A time-dependent cutoff length emerges, removing the
problem of divergences claimed to invalidate Pendry’s proposal.
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necessary cure to divergences at the price of lower
resolution.

velocity c � 1 (the connection between current and field
need not concern us here [16]). In the presence of a slab of
Long ago, Veselago [1] pointed out that very unusual
properties, such as negative refraction, would be exhibited
by materials with negative refraction index. Recently,
Pendry [2] has claimed that those so-called left-handed
(LH) materials with ��!0� � ��!0� � �1, can act as
perfect lenses with, ideally, arbitrary subwavelength
resolution. In addition to its genuine conceptual impor-
tance, this proposal has attracted much attention due to
the practical realization of man-made materials expected
to be left handed [3], where negative refraction has been
claimed to be observed [4]. The challenge to conventional
ideas conveyed in Pendry’s work has fueled a heated
debate that has contributed to sharpen the issue, if not
to settle it [5–8].

The criticism expressed by Garcı́a and Nieto-
Vesperinas [7] (see also Refs. [5,9]) seems of particular
importance, for it would imply that some sort of funda-
mental violation of physical laws is unavoidable in
Pendry’s perfect lens. The idea is that the necessary
amplification of evanescent modes would turn a square-
integrable incoming wave into a non-normalizable sig-
nal, something deemed unacceptable by the authors of
Refs. [5,7,9]. Pendry [8] has replied that losses, unavoid-
able in the real world, would provide a natural cutoff,
forbidding the amplification of large wave vectors
(though degrading the perfect resolution). Haldane [10]
has put the blame of divergences on the role played by
surface modes (polaritons) [11] localized at the interfaces
of the LH material: amplification of evanescent modes is a
gift of those modes [2]. For a homogeneous material,
those surface modes exist and become dispersionless for
increasing wave vectors, being the unphysical absence of
an intrinsic cutoff length which causes the pathologies
[10]. Any realization of a LH material (think of the
composite nature of proposed LH materials [4] or pho-
tonic crystals [12]) must have a natural length below
which the homogeneous description fails, providing the
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Although Pendry’s and Haldane’s escapes from diver-
gences are certainly safe, they seem to suggest that the
textbook idealization of lossless and homogeneous me-
dia, that works so well otherwise [13], is fundamentally
flawed when applied to a material that happens to satisfy
��!0� � ��!0� � �1, at some frequency!0. Apparently,
only after the inclusion on the real world constraints
(losses and/or small-distance structure) could the pro-
posal be made physically acceptable. I find this state of
affairs very unsatisfactory, and it is the purpose of this
Letter to show that, even within the self-imposed ideal-
izations of a lossless (for ! � !0) and purely homoge-
neous, left-handed material, Pendry’s perfect lens
proposal is correct.

To this end, we will consider the time evolution [14,15]
of subwavelength features. Time development requires
the study of the frequency dispersion of a particular
model (or material), apparently preventing us from draw-
ing general conclusions. However, it will be shown that
the structure of the relevant magnitudes in the immediate
vicinity of the target frequency is dominated by the sur-
face polariton modes [10,11]. These modes show universal
features for any LH material at long wave vectors, there-
fore allowing us to extract general conclusions. A key
point will be the identification of a time scale for any
intended length resolution. This time scale, linked to the
near degeneracy of surface modes and missed in station-
ary studies, will provide the clue for overcoming the
problem of divergences.

Consider a transverse current oscillating at frequency
!, located in a source plane at x � x0 (see Fig. 1). The
Fourier component �k� of the current leads to an electric
field given by (S polarization, for simplicity):

E � �0; Ek�x; t�; 0� e
ikz: (1)

In vacuum and for evanescent modes, Ek�x; t� �
e��jx�x0je�i!t, where � �

�����������������
k2 �!2
p

, in units with light
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FIG. 2. Left panel: Real (continuous line) and imaginary
(dashed line, artificially enlarging delta functions) parts of
the transmission coefficient tk�!� in the vicinity of !0. Right
panel: dispersion relation of surface modes !k;
, illustrating
near degeneracy for large wave vectors. Insets show the spatial
form of both modes in the weak-coupling regime.
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FIG. 1. Geometry of the problem: slab of LH material be-
tween planes x � 
a, with source plane at x0, and image plane
at x1. The curve of Ek�x� illustrates perfect restoration of
evanescent fields when x0 � �2a and x1 � 2a.
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LH material between x � 
a, the field acquires the usual
reflected and transmitted components (only the vacuum
part explicit and for arbitrary normalization of the in-
coming wave):

Ek�x; t� � �e��jx�x0j � rk�!� e��x�x0�� e�i!t; x <�a;

Ek�x; t� � tk�!� e���x�x0� e�i!t; x > a: (2)

Pendry [2] has shown that, for a frequency !0 such that
��!0� � ��!0� � �1, the reflection and transmission
coefficients are

rk�!0� � 0; tk�!0� � exp�4�0a�; (3)

with

�0 �
�����������������
k2 �!2

0

q
: (4)

This leads to a perfect restoration at the focal plane x1 �
2a of a source field at x0 � �2a, as shown in Fig. 1.

The exponential amplification inside the LH material,
necessary for image restoration, is at the root of the
divergences pointed out before [7,9]. Notice that a
square-integrable field with Fourier components Ek at
the source plane x0 � �2a, will emerge at the plane
x � a with norm:

N �
Z
d2rkjE�x � a; rk�j2 /

X
k

jEke�0aj2: (5)

This norm certainly diverges for large wave vectors,
unless unjustified constraints are put on the source field.

So far we have described the stationary solution, but
our aim is the time development of such a situation.
Therefore, the frequency behavior of r�!� and t�!� is
needed. In the vicinity of ! � !0, and in the deep sub-
wavelength region, the reflection and transmission coef-
ficients exhibit a highly singular behavior controlled by
the appearance of simple poles. This singular behavior
can be described by
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tk�!� � e4�0a
�!2

0 �!
2
k;���!

2
0 �!

2
k;��

�!2 �!2
k;���!

2 �!2
k;��

;

rk�!� � 2 tk�!�
�!2 �!2

0�

�!2
k;� �!

2
k;��

;

(6)

and is depicted in Fig. 2 (left panel). One can see that, for
instance, tk�!� is basically the sum of four simple poles
located at frequencies 
!k;
. Notice that the target fre-
quency is sandwiched between two such poles !k;
, cor-
responding to the surface modes (right panel of Fig. 2).
These are the even and odd combinations of the funda-
mental mode of an isolated interface, that would
take place exactly at ! � !0. The frequencies !k;
 are
solutions of the equations [11]: �tanh��ma��


1 �

���!��=�m, with �m �
��������������������������������������
k2 � ��!���!�!2

p
. This

gives:

!2
k;
 � !

2
0 
 �

2
k; (7)

with an exponentially small coupling [10] for large wave
vectors

�2
k ’ 8 C !2

0 e
�2�0a; (8)

where �C!0�
�1 � 2�00 � ��

0
0 ��

0
0��k

2=!2
0 � 1��1, with

�00 � d��!0�=d! and �00 � d��!0�=d!. It is important
to realize that the expressions of Eq. (6), though only
valid in the neighborhood of !0, do contain the singular
structure associated with the surface modes. Therefore,
the relevant dynamics of these modes is expected to be
well reproduced. Ruppin [11] has studied these modes
thoroughly, and their importance for the amplifying pro-
cess has been noticed before [2,10,15].

We can now study, for instance, the time evolution of
the transmitted field at the right interface Etrans�x � a; t�,
in terms of the incident field at the left interface Einc�x �
�a; t�. This is enough to understand the amplification
077401-2
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FIG. 3. Time evolution of the modulation amplitude (in units
of the stationary, nearly lossless, limit) for three values of
surface lifetime corresponding to zero �� �!k � 1�, weak
�� �!k � 10�, and strong �� �!k � 0:5� damping.
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issue. We will assume a pure sinusoidal wave at the
frequency!0, but with a well-defined time origin, chosen
to coincide with the signal arrival at the left interface:

Einc�x � �a; t� � ��t��E0e
�i!0t � c:c:�; (9)

��t� being Heaviside’s unit step function.
The evaluation of Etrans�x � a; t� is now trivial but,

given the unusual and controversial nature of this subject,
we choose to change the language in the hope of bringing
the results to a far more familiar situation. Let us say that
we have two identical (left and right) oscillators, �xl; xr�,
with natural frequency !o, and a weak coupling �2

k that
splits the degeneracy !2

k;
 � !
2
0 
 �

2
k. Now we force the

left oscillator with the external force f�t� and watch the
dynamics of the right oscillator. The equations of motion
are

�xxl � � _xxl �!2
0xl � �

2
kxr � f�t�;

�xxr � � _xxr �!2
0xr � �

2
kxl � 0;

(10)

where a damping � has been added for later convenience
but, in accordance with our idealization, is supposed to be
� � 0, for the moment. Upon identifying the external
force, left, and right oscillators with the incident, re-
flected (Eref), and transmitted fields in the following
manner:

f�t�  !�2
k e

2�0a Einc�x � �a; t�;

xl !Eref�x � �a; t�;

xr !Etrans�x � �a; t�;

(11)

this simple problem is entirely equivalent to our original
one. The interpretation of Eq. (11) is direct: the incoming
wave plays the role of an external force hitting the left
interface, and exciting a reflected (left oscillator) and a
transmitted (right oscillator) wave. This mapping allows
us to understand the physics of the original situation in
simpler terms. For instance, forcing the system (left
oscillator) with frequency!0, the stationary solution tells
us that, surprisingly, only the right oscillator moves. This
corresponds [through Eq. (11)] to the absence of a re-
flected wave.

The time development of the field corresponding to the
incoming perturbation of Eq. (9) is now easily obtained,
with the following result:

Etrans�x � �a; t� � A�t� e2�0a��t�E0e�i!0t � c:c:; (12)

where a characteristic time-dependent modulation ampli-
tude A�t� appears:

A�t� � 1� �e�i�!�t � e�i�!�t� = 2; (13)

where �!
 � !k;
 �!0 ’ 
�!k=2 for j�!kj � !0,
with the splitting of polariton modes �!k given by

�!k � !k;� �!k;� ’ 8C!0 e�2�0a (14)

in the deep subwavelength region. This beating of modes,
familiar from the mechanical analog, is sketched in Fig. 3.
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Notice that the total response is the superposition of the
stationary solution �!0�, which is Pendry’s solution, with
the normal modes �!
�. The latter are unavoidably ex-
cited and do not decay in time owing to the absence of
losses around !0.

The relevance of this behavior for the problem of
divergences should be clear by now. For a fixed lapse of
time t (large in units of the bare period: !0t� 1, but
otherwise arbitrary), short wavelengths corresponding to
splittings smaller than �!k � t�1, have barely begun to
emerge at the right interface. Therefore, we can identify a
time-dependent crossover wave vector keff�t�, satisfying
the condition:

t �!keff � 1; (15)

such that, for k� keff , then

A�t� � ��!kt�
2 � �C!0t�

2e�4�0a: (16)

The norm of Eq. (5) is now replaced by

N / �C!0t�4
X
k

jEke�3�0aj2; (17)

for k� keff . Therefore, amplification has been replaced
by decay, solving the problem of divergences. Of course,
progressively shorter details take longer and longer time
(and more energy from the current source) to develop
[14,15], but nothing pathological affects the physics of
the system. I emphasize again that this picture is unavoid-
able in the deep subwavelength limit, irrespective of the
model details of ��!� and ��!� . It amounts to recogniz-
ing that, for a given wave vector k, the system’s dynamics
has a characteristic time scale given by the (inverse) of
the frequency splitting between the two surface polari-
tons corresponding to that wave vector [Eq. (14)]. The
relevance of this time scale would remain hidden if only
stationary solutions were analyzed. It is a curious though
rewarding fact that, in a system that has been idealized to
077401-3
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be homogeneous down to arbitrary small scales (absence
of intrinsic length scale), time takes up the responsibility
of providing the necessary cutoff length in order to
prevent divergent catastrophes.

It could be argued that the solution provided here to the
problem of divergences is an artifact of the ideal lossless
nature of the problem. Real systems would show losses
that will eventually kill any transient regime, perhaps
leaving again the divergent stationary solution. This is not
the case, as can be seen by the explicit inclusion of a finite
lifetime �� � ��1� in Eq. (10). A stationary solution is
indeed established, but with amplitude Astat greatly re-
duced from the lossless limit Astat�1� at large wave vec-
tors:

Astat���
Astat�1�

�
1

1� ���!k�
�2 : (18)

Notice that, for small values of ��!k, the stationary
amplitude is what would have been expected if the loss-
less evolution were suddenly stopped at a time of the order
of �. Therefore, we see exactly the same physics as in the
lossless case, but now the role of the observation lapse of
time is taken by the polariton lifetime. A resolution wave
number �keff� can be defined again [compare Eq. (15)]:

� �!keff � 1 (19)

such that, for wave numbers larger than this cutoff, ex-
ponential decay rather than amplification is observed at
the exit of the slab. The norm of field at the exit is now as
in Eq. (17), with the exchange t$ �.

The transient behavior for the two regimes ��
��!k�

�1 and � � ��!k��1 is illustrated in Fig. 3. The
picture is simple: when the lifetime of surface polaritons
is much longer that the characteristic time scale (inverse
splitting of modes) for the wave vector k, the stationary
limit approaches the lossless case. This means that surface
modes have had enough time to build the final response
before dying away. On the other hand, if the surface
modes do not live long enough, no amplification is
possible.

In the deep subwavelength limit, Eq. (19) allows us to
provide an explicit expression for the minimum lifetime
(�min) required to get a resolution lres � 2 =keff , with
radiation of wavelength !0 � 2 =!0:

�min �
1

8C!0
exp

�
4 a

����������������������
l�2res � !�20

q �
: (20)

Similar results have been obtained before for the resolu-
tion [15], further reinforcing the correctness of our re-
striction to the polariton dynamics. Notice the
characteristic exponential dependence on resolution.
Although mainly concerned with matters of principle in
this Letter, this demanding result clearly shows that the
077401-4
polariton lifetime may well be a major limiting factor for
a practical realization of perfect lenses. I believe this
vulnerability [15] of the ideal situation, a fingerprint of
the near degeneracy of surface modes, is at the root of
similar results found before [17,18].

In spite of potential difficulties in the road to a practical
left-handed amplifier, the essential physics described in
this Letter may have been observed in a different system.
The role of coherence between surface modes (and the
required time scale associated with it) in the explanation
of the extraordinary transmission through hole arrays
[19] is strikingly similar to our treatment. This reinforces
the view [2] that both problems (left-handed amplifica-
tion and extraordinary transmission through hole arrays)
are probably different manifestations of the same physi-
cal behavior of surface modes.
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