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Friedel Oscillation in Charge Profile and Position Dependent Screening around a
Superconducting Vortex Core

M. Machida
CCSE, Japan Atomic Energy Research Institute, Ueno Sumitomo Building 8, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015, Japan

T. Koyama
IMR, Tohoku University, 2-1 Katahira Aoba-ku, Sendai 980-8577, Japan

(Received 10 May 2002; published 20 February 2003)
077003-1
We calculate microscopically the charge distribution around a vortex in type II superconductors by
solving the Bogoliubov–de Gennes equation and the Poisson equation simultaneously. Our calculations
show that the charge density depletion occurs in the vortex center and the Friedel oscillation appears
over the coherence length when kF� is small. We also calculate the density-density correlation function
K�r; r0� as a function of two spatial variables, r and r0, and find that K�r; r0� is strongly dependent on the
distance from the vortex center. We clarify the spatial dependent screening properties on the basis of the
correlation function in the core region.
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Koláček et al. extended the Ginzburg-Landau theory to
include the scalar potential and formulated phenomeno-

numerical studies for the Bogoliubov–de Gennes equa-
tion including the scalar potential in the single-vortex
Recently, the electronic structure in a vortex core
in type II superconductors has attracted a great interest
in connection with the anomalous electronic states in
high-Tc superconductors. It has been extensively dis-
cussed whether the vortex core has an electric charge or
not [1–6] and also whether it is magnetized or not [7–9].
However, these issues have not yet been fully solved even
within the conventional BCS theory. In this Letter we
perform full microscopic calculations for the charge dis-
tribution around a vortex core and unveil the charge
profile and the screening effect in the single-vortex state.

Since the observation of the anomalous Hall sign
change in high-Tc cuprates [10], several mechanisms of
charged vortices have been suggested [1,4,5]. Noting that
the chemical potential in the superconducting state in
superconductors breaking the particle-hole symmetry
differs from that in the normal state, Khomskii and
Freimuth pointed out that the chemical potential differ-
ence causes charge redistribution in between the normal
region in a vortex core and the periphery superconducting
region; that is, the vortex core should be charged up [1].
Blatter et al. calculated phenomenologically the charge
profile around a vortex core on the basis of this charging
mechanism [11]. On the other hand, Hayashi et al. showed
that vortices are intrinsically charged up in superconduc-
tors having a small value of kF�, solving the Bogoliubov–
de Gennes equation [4]. The charging mechanism in such
a system is independent of whether the electron system
has particle-hole symmetry or not; that is, the induced
charge originates from the depletion of the matter density
in a vortex core which is commonly observed in a neutral
superfluid system. However, in their calculations the
screening effect due to the Coulomb repulsion between
superconducting electrons is neglected. Afterwards,
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logically the intrinsic depletion mechanism in charged
superconductors [5]. Very recently, Matsumoto et al.
also performed microscopic calculations, using the
Bogoliubov–de Gennes equation coupled with the
Poisson equation [12]. Although many studies concerning
the vortex charge have so far been performed, its origin
and also the charge profile around a vortex have not yet
been solved completely on the basis of microscopic cal-
culations. In this Letter we clarify how the vortex is
charged up and unveil a novel feature in the charge profile
in the vortex state.

In obtaining the charge profile in a superconductor the
screening effect cannot be neglected [13]. The charge
screening of the Thomas-Fermi type and the Friedel
oscillations appearing in the induced charge profile are
well known in the normal state of a charged Fermi liquid
[13]. The former one works in a classical charged liquid,
too, while the latter one has the quantum mechanical
origin. Fetter investigated the screening effect in the
superconducting state and showed that the Thomas-
Fermi screening is dominant; that is, the Friedel oscilla-
tions diminish in the Meissner state [14]. This is because
the Fermi surface becomes obscure in the presence of a
superconducting gap. However, such a simple picture for
the charge screening in the superconducting state breaks
down in the vortex core region, since the low-energy
quasiparticles in a vortex core behave like normal elec-
trons, which implies that the Friedel oscillation appears
around a vortex core. Hence, one understands that the
Thomas-Fermi screening employed in previous phenom-
enological studies [5,11] is justified only in the region far
from the vortex core and then a full microscopic treat-
ment is required for obtaining the accurate charge profile
in the vortex state. In this Letter, we perform extensive
2003 The American Physical Society 077003-1
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FIG. 1 (color). Spatial dependence of the gap function ��r� (a)
and the charge density ��r� (b) for kF� � 4 with � � 18:5 �A. r
is the distance from the vortex center, which is normalized in
terms of the unit length l0 �� 0:5292 �A� in the atomic unit.
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state. Using the solutions, the density-density correlation
function is calculated as a function of the distance from
the vortex center. The charge profile and the screening
effect are shown to have strong spatial dependence in the
vortex state.

The BCS Hamiltonian for a charged superconductor is
written as

H � HBCS �
Z

dr
�
en̂n�r���r� �

E2�r�
8�

�
; (1)

where n̂n�r� is the density operator, � is the scalar poten-
tial, and E is the electric field. From Eq. (1) the BdG and
Poisson equations are derived as follows:

���r� � e��un�r� � ��r�vn�r� � Enun�r�;

	��
�r� � e��vn�r� ��
�r�un�r� � Envn�r�;

	r2��r� � 4���r�; (2)

where ��r� � 	 	h2
2mr

2 	 EF, and ��r� � ehn̂n�r�i. These
equations have to be self-consistently solved together
with the gap equation ��r� � g

P
n un�r�v



n�r�. In this

Letter, we drop the vector potential A�r� since the effect
of the superconducting current is small [4]. We also con-
centrate on the T � 0 case. Consider an isolated vortex in
an s-wave superconductor. The eigenfunctions, un�r� and
vn�r�, which are classified in terms of the angular mo-
mentum �, are expanded as

un;��r� �
X
i

cn;i�i;�	1=2�r� exp�i��	 1=2���;

vn;��r� �
X
i

dn;i�i;��1=2�r� exp�i��� 1=2���;
(3)

where �i;m�r� � �
���
2

p
=RJm�1��im��Jm��imr=R�, j�j �

1=2; 3=2; 5=2 � � � , and i is an integer ranging from i � 1
to N, depending on the value �. Thus, the BdG equation
in Eq. (2) can be solved as an eigenvalue problem
for 2N��� � 2N��� matrices [15]. On the other hand,
the Poisson equation, i.e., the third line of Eq. (2), is
solved using the expansions, ��r� �

P
i fi�i0�r� for

��r��� ��r�� and ��r� � e
P

n jvn�r�j
2.

Now we present the numerical results. Figures 1(a) and
1(b) show the dependence of the gap ��r� and the charge
density ��r� on the radial distance r from the vortex
center in the case of kF� � 4. Black and red lines in these
figures represent the results, respectively, for the neutral
(� � 0) and the charged (� � 0) cases. In the neutral
case, the present calculation is essentially the same as that
by Hayashi et al. in the quantum limit, i.e., in the small
kF� case [16]. In this limit ��r� shows oscillatory behav-
ior around a vortex core, as seen in Fig. 1(a). It is also
noted that the gap suppression due to the Coulomb effect
in the charged case is very tiny. On the other hand, as seen
in Fig. 1(b), the charge distribution in the vortex core in
the charged case is quantitatively very different from that
in the neutral case, though in both cases the charge
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density is depleted near the vortex center. Note that the
charge depletion in the vortex core is compensated so
as to reduce the Coulomb energy and the strong oscilla-
tions with the sign changes appear in the charge density
profile, ���r� 	 �1�, in the charged case. This result is
sharply contrasted with that in the neutral case; that is,
���r� 	 �1� does not show the change of signs. It is also
noted that the oscillations in ��r� have the characteristic
length �=kF and survive over the coherence length. Such
a charge profile is also seen for larger values of kF�, but
the amplitude of the oscillations in ���r� 	 �1� shrinks
for larger kF�. We have checked this tendency by per-
forming calculations up to kF� � 16.

From these results one notices that the simple screening
of the Thomas-Fermi type does not work in the vortex
state; that is, the oscillatory distribution appears in the
induced charge profile, especially in the small kF� cases.
In Fig. 2(a) we present a 3D plot of ��r� to demonstrate
the oscillatory behavior more clearly. ��r� vs r is also
shown in Fig. 2(b). As seen in these figures, the oscilla-
tions extend over the coherence length even for kF� � 8,
though its extension is shortened compared to that in the
case of kF� � 4. Furthermore, we check how the range in
which the oscillations appear varies with changing the
values of kF�. We define the characteristic decay length
!F at which the charge oscillation amplitude decreases
below 10	2 of the maximum amplitude. It is seen that in
all the cases the charge density attains �1 after about
5 times of oscillations. In Fig. 3 we plot the ratio !F=� as a
function of kF�. The ratio decreases with increasing the
value of kF�. Note that the decay length is much longer
than � in the case of kF� � 4, i.e., in the quantum limit.
Since kF� is ranging from 4 to 10 in high-Tc supercon-
ductors, one may expect that such charge density oscil-
lations are observable in the vortex states.
077003-2
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FIG. 3. kF� dependence of !F=�, where !F is the decay
length of ��r� 	 �1.
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FIG. 2 (color). (a) 3D plot and contour map of the charge
density profile in the case of kF� � 8. The line with arrows at
both ends gives a measure of the coherence length. (b) Spatial
dependence of the charge density. The parameter values are the
same as in (a).
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Let us next study the origin of the oscillations. As is
well known, some of the wave functions for the qausi-
particle states in an s-wave superconductor are localized
in a vortex core and they oscillate with periods of about
2�=kF since their energy is in the very vicinity of the
Fermi level. On the other hand, the extended quasiparticle
states have the energy being scattered from 	Ef to 0 and
therefore their wave functions oscillate with various pe-
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riods. From this fact one may understand that the charge
density oscillations are caused mainly by the localized
quasiparticles; that is, the oscillations can be regarded as
the Friedel oscillations produced by the core states. In
fact, numerical calculations for various values of kF�
reveal that the oscillations appear only around the vortex
core and their period is nearly equal to �=kF. One can
also confirm this by comparing the oscillation periods in
Figs. 1(b) and 2(b). The ratio of the period to � given in
Fig. 1(b) is about 2 times longer than that in Fig. 2(b).
Note that the oscillatory charge distribution cannot be
seen in the Meissner state in which the charge inhomo-
geneity is exponentially screened out, i.e., the Thomas-
Fermi screening effect [14].

Now, let us study the screening properties near a vortex
core in the presence of an external electric field on the
basis of the linear response theory. The dielectric
response to the external scalar potential in the vortex
state is given in [17]. The induced electron density nin at
T � 0 K is expressed as
nin�r� �
Z

dr0K�r; r0��ext�r0�; K�r; r0� � 	e2
X
ij

Fij�r; r0� � F

ij�r; r

0�

Ei � Ej
;

Fij�r; r0� � 2�ui�r�vj�r�u
i �r
0�v


j �r
0� � ui�r�vj�r�u
j �r

0�v

i �r

0��;

(4)
where �ext�r� is the external scalar potential. In this
Letter we focus on the case in which the external scalar
potential is rotationally invariant for simplicity. In
this case the kernel, K�r; r0�, depends only on the two
spatial variables in the radial direction r and r0, i.e.,
K�r; r0� �� K�r; r0�� [17]. Then, K�r; r0� is simplified as

K�r; r0� �
X
n;m

X
�

f�;	�
n;m �r; r0� � f	�;�

m;n �r; r0�
En;� � Em;	�

; (5)

where

f�;	�
n;m � un;��r�un;��r0�vm;	��r0�vm;	��r�

� un;��r�vn;��r
0�um;	��r

0�vm;	��r�: (6)
Figure 4(a) shows the spatial dependence of K�r; r0� for
fixed values, r0 � 1, 8, and 130 in the atomic unit. The
sites having distances r0 � 1 and 8 are in the vortex core,
while the points located at a distance r0 � 130 are outside
of it. It is noted that jK�r; r0�j does not take a maximum
value at r � r0 in the case of r0 � 1, i.e., r0 being fixed
near a point close to the vortex center, which indicates the
disappearance of the self-correlation in the neighborhood
of the vortex center, though it takes the maximum at r �
r0 for larger values, r0 � 8 and 130. From these results one
may conclude that the density depletion occurring in the
core region cannot be compensated near the vortex center
and, then, the charge redistribution due to the screening
effect takes place mainly in the periphery region [18].
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FIG. 4 (color). The spatial dependence of (a) the charge
density correlation function K�r; r0� for fixed values r0 ( �
1:0, 8.0, and 130.0) and (b) the gap function ��r� in the case
of kF� � 4. The black, red, and blue arrows, respectively,
indicate the positions having the distances r0 � 1:0, 8.0, and
130.0.
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Let us next investigate the difference in the screening
effect around the two sites, r0 � 8 and 130. As seen in
Fig. 4(a), K�r; r0� almost monotonically decays as r leaves
r0 � 130, while it shows large oscillations, i.e., the
Friedel oscillations, around the core edge in the case of
r0 � 8, which indicates that the Friedel oscillation devel-
ops in the vortex core region, while the Thomas-Fermi–
type screening is dominant in the region outside the
vortex core. Hence, one may conclude that the core states
in the vicinity of the Fermi level contribute to the oscil-
latory screening behavior near the core region. We also
note that the Friedel oscillation becomes more remarkable
in the quantum limit and also in the d-wave case. Since
the low-energy quasiparticles in the nodal directions also
contribute to the Friedel oscillation in the d-wave case
[19], one understands that the Friedel oscillation is an
essential character in the charge distribution near a vor-
tex core in high-Tc superconductors.

Finally we point out that the charging mechanism
discussed in this Letter is close to that proposed by
Koláček et al. [5]; that is, the vortex charge is induced
mainly by the intrinsic density depletion in the vortex
core. Our microscopic calculation reveals that the intrin-
sic depletion cannot be supressed near the vortex center
and then the strong Friedel oscillation appears in the core
region. Thus, the charge profile in the vortex state is
essentially different from that obtained in terms of the
simple Thomas-Fermi–type screening effect. In our cal-
culations, we employ the two-dimensional free electron
model having approximately the particle-hole symmetry.
The effect of the particle-hole asymmetry considered by
Khomskii et al. [1] and Blatter et al. [11] may be incorpo-
rated into our calculations by introducing the energy
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dependent electron mass �m ! m
�E�� [3]. We have found
that the effect of the particle-hole asymmetry for the
vortex charge is very small within a reasonable range of
m
�E�, that is, the density depletion mechanism is always
dominant in small kF� cases. From this result one under-
stands that the sign of the charge emerging in the vortex
core is almost uniquely determined in charged supercon-
ducting systems with a small value of kF� as long as other
strong charging mechanisms do not work. In fact,
Kumagai et al. have observed the carrier depletion in
the vortex core in the overdoped region, where the corre-
lation between electrons is relatively weak [6].

In summary, we microscopically calculated the charge
profile around a vortex in charged superconductors. For a
small value of kF� the vortex is intrinsically charged up
due to the density depletion mechanism. The Friedel
oscillation appears in the charge profile in the region
near the vortex core, especially in the small kF� case.
We believe that the Friedel oscillation plays an important
role in the formation of the vortex core states in high-Tc
superconductors.
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