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We consider electron transport through a quantum dot described by the Kondo model in the regime of
large transport voltage V in the presence of a magnetic field B with max�V; B� � TK. The electric
current I and the local magnetization M are found to be universal functions of V=TK and B=TK, where
TK is the equilibrium Kondo temperature. We present a generalization of the perturbative renormali-
zation group to frequency dependent coupling functions, as necessitated by the structure of bare
perturbation theory. We calculate I and M within a poor man’s scaling approach and find excellent
agreement with experiment.
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logarithmic terms in order to recover the scaling behav-
ior. For the equilibrium case, it is known how to achieve

tions. Employing simplifications in the spirit of Ander-
son’s poor man’s scaling, we derive a set of RG equations
The transport of electrons through quantum dots in the
Coulomb blockade regime is strongly suppressed. In the
case of an odd number of electrons on the dot, however,
when the dot carries a spin S, exchange coupling of S to
the spin of the conduction electrons in the two leads �L;R�
gives rise to a Kondo resonance at low temperature T �
TK (TK is the Kondo temperature). Electrons may then
cross the dot via resonance tunneling, thus circumventing
the Coulomb blockade, as seen in a number of recent
experiments [1,2]. While there is a wealth of methods
such as Bethe ansatz, conformal field theory, numerical
renormalization group (RG), and self-consistent pertur-
bation theory available to treat the Kondo model in equi-
librium, most of these methods fail in the presence of a
finite bias voltage V, for V � TK.

The first theoretical treatment of this problem dates
back to the 1960s [3] when the current through a Kondo
impurity, in the presence of finite V and magnetic field B,
was calculated in perturbation theory (PT) including
leading logarithmic corrections. These early works also
attempted a resummation of the logarithms within
Nagaoka’s or Abrikosov’s approximations. All of these
works, however, neglected salient nonequilibrium physics
of this problem (see below).

A crucial difference between a Kondo dot in the regime
of large voltage V � TK and the equilibrium Kondo
problem is the presence of inelastic processes, associated
with the finite current through the dot, down to the lowest
temperatures [4,5]. These processes destroy coherence on
an energy scale � and prevent the full formation of the
Kondo singlet resonance state. As discussed in [5], for a
conventional Kondo dot described by an Anderson model,
�� V= ln2�V=TK� � TK for V � TK. In this regime,
which we consider here, a perturbative treatment is suffi-
cient to capture the developing Kondo correlations. As is
well known from the usual Kondo effect, even in the
perturbative regime it is necessary to resum the leading
0031-9007=03=90(7)=076804(4)$20.00 
this in a systematic and controlled way by employing the
perturbative renormalization group method. For the non-
equilibrium Kondo problem, a comparable treatment has
not been developed thus far. A certain resummation of PT
has been considered [6] within an Anderson model for the
differential conductance G�V; B�. However, the summa-
tion of leading logarithms remained incomplete.

In this Letter, we present the first systematic study of
renormalized PT for the nonequilibrium Kondo problem,
considering, in particular, the influence of a magnetic
field B. We focus on the regime V � TK, for any B. Our
results are also applicable for largeB � TK, and arbitrary
V. In both cases, the full formation of the Kondo reso-
nance is inhibited, and a perturbative treatment in the
exchange coupling J is possible. At first sight, one might
expect the nonequilibrium Kondo effect to be similar to
the high temperature regime T � TK of the usual Kondo
model. It differs, however, in three qualitative aspects
from the latter: (i) The occupation probabilities of the
local spin are not thermal and have to be determined
by solving a quantum Boltzmann equation. This leads
to an unusual dependence, e.g., of the spin susceptibility
on V and to a novel structure of the logarithmic correc-
tions in PT. (ii) Electrons in a wide range of energies �V
contribute to the low-T properties. In contrast to the case
of large T, where all features are smeared on the scale T,
we find that it is therefore essential to keep track of the
frequency dependence of the renormalized coupling con-
stants. (iii) Lifetime effects play a crucial role in non-
equilibrium, as the corresponding rates are larger than T
but smaller than V [5].

As a first step, we present and discuss the results of bare
PT for the current I�V; B� and the magnetization M�V; B�
in leading logarithmic order. Next, we turn to the deri-
vation of renormalization group equations for the running
coupling constants. The structure of bare PT forces one
to keep the frequency dependence of the coupling func-
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FIG. 1. Feynman diagrams for (a) DLR, (b) PF self-energies,
and (c) vertices entering the one-loop RG equation. PF (elec-
tron) propagators are displayed as dashed (full) lines.

P H Y S I C A L R E V I E W L E T T E R S week ending
21 FEBRUARY 2003VOLUME 90, NUMBER 7
in one-loop order. These have to be supplemented by a
self-consistent determination of the relaxation rate �,
providing a cutoff of the RG flow. Finally, the physical
quantities current I, magnetization M, and differential
conductance G are calculated to leading order in
1= ln�max�V; B�=TK� by inserting the renormalized fre-
quency dependent coupling functions into the lowest or-
der PT expressions. In this way, all physical quantities
show scaling behavior in V=TK and B=TK, where TK is the
equilibrium Kondo temperature.

We consider the Kondo Hamiltonian,
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where �L;R 	 �V=2. S is the spin 1=2 on the dot and �
are the Pauli matrices. We shall use the dimensionless
coupling constants gd 	 N0JLL 	 N0JRR and gLR 	
N0JLR 	 N0JRL (assuming a symmetric dot), where N0

is the local density of states. The local spin S 	
1
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in the sector of the Hilbert space with
P

� f
y
�f� 	 1.

The electric current I	�e=
h�JLR Im�DK
LR�t;t�� through

the quantum dot may be expressed through the Keldysh
component of the contour-ordered correlation func-
tion DLR�t;t
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S�t0�gi. To obtain the leading logarithmic corrections, we
evaluate the diagrams shown in Fig. 1(a), which for
T;V;B much smaller than the band cutoff D yield

I	
2e
2�
h

�
�
2
gLR

�
2
fu2�V��u2�V�B��u2�V
B�


M�c�B�
c�
B��g; (2)

with up�x�	x�1�2pgd ln
D
jxj�, (p	1;2), and c�B�	

cothV�B
2T �u1�V�B��2Vgd ln

D
jVj�2Bgd ln

D
jBj�, where all

logarithms are implicitly cut off by T. Appelbaum’s ex-
pression for the current [3] differs from (2) in that he
assumed M to be given by its thermal equilibrium value.
In the zero-field limit M vanishes and (2) reduces to I	
2e
2�
h�

�
2gLR�

23V�1�4gd ln
D
jVj� derived earlier in Refs. [3,7].

To calculate the current for finiteB, one needs to know the
local magnetization M	n" 
n#, and at finite voltage this
necessarily involves solving a quantum Boltzmann equa-
tion. In diagrammatic language, this is nothing but the
Dyson equation of the lesser PF Green function G<

� �!� in
steady state: G<

� �!����!�	�<
� �!�A��!�, where �� is

the imaginary part of the self-energy, and A� the PF
spectral function. The leading logarithmic corrections
are obtained from the diagrams in Fig. 1(b), yielding

M	
T

coth B
2T �

T
2 �g2
u1�B���g2LR�c�B��c�
B��

; (3)

with T 	2g2�u1�B��2g2LR�u1�V�B�
u1�V
B�
2B�
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and g2�	�g2d�g2LR�. Note that the magnetization differs
from the equilibrium result even to order g0, as has been
derived independently in [8] [see also Eq. (8) below] in
disagreement with [9]. Most notably, the magnetic sus-
ceptibility changes from the usual 1=T Curie law to a 1=V
behavior for V�T. Corrections of order g3 lnD to the
collision integrals in the quantum Boltzmann equation
result in corrections of order g lnD to M. Thus, they are
much larger than the usual g2 lnD corrections obtained in
equilibrium. In the limit V!0, Eq. (3) simplifies to the
noninteracting result M	 tanh�B=2T�, as we have ne-
glected the subleading g2 lnD corrections which can be
obtained by including the Re� shift of the PF energy
levels. The effects of Im� are more important and are
discussed below.

In the scaling regime, V;B � D, bare PT is not valid
and has to be resummed even for small couplings g and in
the weak-coupling regime V;B � TK [see Fig. 3(b)]. The
method of choice for such a resummation is the perturba-
tive RG, using the basic idea that a change of the cutoff D
can be absorbed in a redefinition of the coupling con-
stants g [11].

A close inspection of Eqs. (2) and (3) indeed reveals
that, in the regime where, under renormalization, D gets
smaller than V, it is not possible to absorb a change of D
in a redefinition of the couplings. For example, logarith-
mic corrections to gLR in the denominator of Eq. (3) are
proportional to 2 ln�D=V� for B ! 0, while the analogous
correction in the numerator takes the form ln�D=V� �
ln�D=T�. This apparent breakdown of scaling is due to the
fact that electrons in a finite energy window �R & ! &

�L contribute to low-energy properties. How much their
scattering is renormalized will depend on their respective
positions within this window: Upon renormalization, the
coupling ‘‘constants’’ acquire frequency dependences.
Taking this properly into account, one recovers scaling.
One way to derive perturbative RG equations in such a
situation is to start from so-called ‘‘exact’’ RG equations
for (!-dependent) one-particle irreducible Green func-
tions by a straightforward generalization of equilibrium
RG methods [12]. We will not follow this route here, but
suggest a substantially simpler (but less systematic) ap-
proach. A considerably more involved real-time RG
scheme has been proposed by Schoeller and König [13],
but has not yet been applied to the present problem.
076804-2



-200 -100 0 100 200

ω / TK

0.08

0.1

0.12

0.14

0.16

g z 
/ ⊥

(ω
)

gz,  (ω)
gz,  (ω)
g⊥(ω)

|V-B|
V

V+B

FIG. 2. Renormalized coupling constants ~ggz;��!� (dashed
lines) and ~gg?�!� (solid line) for B 	 100TK and V 	 70TK.
For these values, Eqs. (5) and (7) yield � 	 6:47TK.
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We start from the observation that all logarithmic
terms in next-to-leading order PT stem from the simple
vertex renormalizations shown in Fig. 1(c) when the real
part � 1=�!� B=2� of the PF Green function is convo-
luted with the Keldysh component of the electron line

2�iN0 tanh��!
���=2T�. Using cutoffs symmetric
with respect to �L;R, respectively, one obtains at T 	 0,

@
@ lnD

Z D


D
d!

sign!
!
�!

� 2��D
 j�!j�; (4)

where �! depends on ��, B, and the incoming and
outgoing frequencies. Now we include the effect of fre-
quency and spin-dependent coupling constants denoted
by g��!c;�0�0!0

c

�!f ;�0!0
f

for an incoming electron in lead � 	 L;R
with energy !c and spin � 	"; # interacting with a PF of
spin � and frequency !f describing the local spin.
Primed quantities refer to outgoing particles. Generally,
vertices are complex and have Keldysh indices, but we
will keep track only of the real parts on one Keldysh
contour, which we believe to be justified to leading order
in 1= ln�V=TK�. The pseudofermion spectral functions are
strongly peaked at ! 	 �B=2, which allows setting
!f�!

0
f� to 
� B

2 �
�0 B
2�. Furthermore, neglecting the re-

maining frequency dependence of the coupling functions
in the frequency window j!j<D [14], one is led [15] to
two RG equations for the coupling functions ~ggz��!� and
~gg?�!� (assuming JLL 	 JRR 	 JLR 	 JRL 	 J):
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with ~gg?�!� 	 ~gg?�
!�, ~ggz"�!� 	 ~ggz#�
!�, and
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with the initial conditions ~ggz��!� 	 ~gg?�!� 	 JN0 at
D 	 D0, the bare cutoff, and ��! 	 ��D
 j�!j�.
Despite the fact that we use the same functions for both
diagonal (LL, RR) and off-diagonal (LR, RL) processes,
their renormalization is drastically different as different
frequency ranges are probed in the two cases (see below).
In various limits, analytic solutions are possible but, as
the formulas turn out to be rather lengthy, we will here
restrict ourselves mainly to numerical results.

The RG Eqs. (5) are valid in the regime of cutoff values
D where the effect of spin-flip processes destroying the
quantum coherence of the Kondo bound state is negli-
gible, or D > �. Because of the finite current, relaxation
processes contributing to � are present even at T 	 0, and
lead to an imaginary part of the self-energy of the
pseudofermions [e.g., in the PF propagator in the dia-
grams of Fig. 1(c)] and to vertex corrections. Although
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slightly different relaxation rates may enter in the various
coupling constants, with logarithmic accuracy we may
use a single rate �. As all relevant processes involve at
least one spin flip, we identify � with the transverse spin
relaxation rate 1=T2, which is given in terms of the
renormalized couplings as

� 	
�
4 
h

X
�;�0	L;R
�	
1;1

Z
d!�~ggz��!�2f!
��

�1
 f!
��0
�

� ~gg?�!
 �B=2�2

� f!
��
�1
 f!
��0
�B��: (7)

Note the missing factor 2 in front of the spin-flip term
~gg?�!
 �B=2�2 in � [compared to the corresponding
term in (9), below], which reflects the fact that 1=T2

[16] is not given by a pseudofermion self-energy and
arises from vertex corrections in a linear-response calcu-
lation of the transverse susceptibility. The effect of T2 is
to provide an upper time cutoff for the coherent scatter-
ing processes entering Eq. (5). Hence, it is modeled
phenomenologically by replacing �! with ��D
������������������
!2 � �2

p
� in Eq. (5).

A self-consistent solution of Eqs. (5) and (7) can now
be obtained with little numerical effort (formally, effects
of self-consistency for � are subleading for V; B � TK).
The resulting couplings ~ggz=?�!� are shown in Fig. 2. In
the renormalization process, the ~ggz=?�!� develop peaks at
frequencies ! 	 
�B� V

2 for ~ggz� and ! 	 � 1
2 �B� V�

for ~gg?, at which resonant scattering from one Fermi
surface to another becomes possible. Only these resonant
processes survive for small running cutoff D, as can be
seen from the structure of the functions �! 	 ��D

j!j� in (5). This Kondo-type resonant enhancement is
eventually cutoff by �. Note that � remains larger than
TK for V; B > TK prohibiting the flow towards strong-
coupling contrary to the suggestion of [9] (Ref. [5] dis-
cusses conditions for strong-coupling physics in the
regime V � TK).

Knowing the renormalized ~ggz=?�!� at D 	 0, the mag-
netization M can be found from solving the Boltzmann
equation @tn� 	 0 or
076804-3
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the solution of which in turn determines the current as
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�L$R�; (9)

In Eqs. (7)–(9), there are further lifetime effects, which
become relevant for jV
Bj;T&�. This broadening we
model phenomenologically by smearing the Fermi func-
tions over a width � [15]. Note that expanding these
results in bare PT, one recovers Eqs. (2) and (3).

In Fig. 3, we show M�V=B;B=TK� and G�V=B;B=TK�.
Within PT, G shows threshold behavior at jVj 	 B, due to
the opening of another transport channel involving spin
flip, requiring the Zeeman energy B. Higher order pro-
cesses enhance the steps into peaks [Fig. 3(b)]. The agree-
ment with experiment [2] is excellent [Fig. 3(c)],
considering that there is no free parameter and our result
is valid up to terms of order 1= ln�max�V; B�=TK� only. We
emphasize that neither perturbation theory [Fig. 3(b)] nor
Appelbaum’s result (as shown in [2]), nor the result of [6]
can describe the experiment.

In conclusion, we propose a simple method to general-
ize poor man’s scaling (one-loop order) to nonequili-
brium. Compared to the equilibrium situation, it is
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FIG. 3. (a) Local magnetization M�V=B; B=TK� of a symmet-
ric dot for fixed magnetic field B. (b) Differential conductance
in units of G0	e2=��
h�. Comparison of perturbative RG and
bare PT to O�J2� and O�J3�. (c) Conductance measurements of
Ref. [2] (symbols) on metallic point contacts in magnetic fields
0.85, 1.7, 2.55 T (B	36TK , 72TK, and 104TK with TK�30mK
[2]). Assuming that the corresponding point contact is de-
scribed by a single-channel (JLR	

���������������
JLLJRR

p
) Kondo model,

�JRR=JLL��4:2 is determined from G�V	0;B	0;T	
50mK�	 ��4JLLJRR�=�JLL�JRR�

2�Gsym�T=TK�, where Gsym is
known exactly from numerical RG calculations [10]. This fixes
all parameters for our RG calculation (solid lines, T	0) which
uses a straightforward generalization of (5)–(8) for JLL �JRR.
As the (B-dependent) background is not known experimentally,
we subtract �G	GB
5:2�10
5G0�V=TK�, where GB is fitted
to our results at large V.
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necessary to include nonequilibrium distribution func-
tions, decay rates, and the ! dependence of coupling
constants. The different structures arising even in the
perturbative regime may be best exemplified by consid-
ering the local magnetic susceptibility for V�TK, B!0,

-�V�	
2

V

1�2� ln V
TK
�1�� ln V

TK
��

1

�1�2� ln V

TK
� ln�ln V

TK
�1�� ln V

TK
��

�1��ln V
TK

� ln V
TK

�
2
; (10)

with �	�g2d
g2LR�=�2gLR� and TK	De
1=�gd�gLR�. To
the same order of approximation, one obtains in equilib-
rium for T�TK just -	1=T.
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