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Interaction-Induced Magnetoresistance: From the Diffusive to the Ballistic Regime
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We study interaction-induced quantum correction ���� to the conductivity tensor of electrons in two
dimensions for arbitrary T�, where T is the temperature and � the transport mean free time. A general
formula is derived, expressing ���� in terms of classical propagators (‘‘ballistic diffusons’’). The
formalism is used to calculate the interaction contribution to the magnetoresistance in a classically
strong transverse field and smooth disorder in the whole range of temperatures from the diffusive
(T� � 1) to the ballistic (T� * 1) regime.
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ventionally used in MR experiments, 1=� is typically grams are shown in Fig. 1. The shaded blocks in Fig. 1
The magnetoresistance (MR) in a transverse field B is
one of the most frequently studied characteristics of the
two-dimensional (2D) electron gas [1,2]. Within the
Drude-Boltzmann theory, the longitudinal resistivity of
an isotropic degenerate system is B independent,
�xx�B� � �0 � �e2�v2

F��
�1, where � is the density of

states per spin direction, vF the Fermi velocity, and �
the transport scattering time. There are several distinct
sources of a nontrivial MR, which reflect the rich physics
of 2D systems. First, quasiclassical memory effects may
lead to a MR [3], which shows no T dependence at low
temperatures. Second, weak localization [1] induces a
negative MR restricted to the range of very weak mag-
netic fields. Finally, another quantum correction to MR is
generated by the electron-electron interaction. This effect
is the subject of the present paper.

It was discovered by Altshuler and Aronov [1] that the
Coulomb interaction enhanced by the diffusive motion of
electrons gives rise to a quantum correction to conduc-
tivity, which has in 2D the form (we set kB � �h � 1)

��xx ’ �e2=2�2� lnT�; T� � 1: (1)

It is assumed here for simplicity that � � kF, where � �
4�e2� is the inverse screening length. The condition
T� � 1 under which Eq. (1) is derived [1] implies that
electrons move diffusively on the time scale 1=T and is
termed the ‘‘diffusive regime.’’ Subsequent works [4]
showed that Eq. (1) remains valid in a strong magnetic
field, leading (in combination with ��xy � 0) to a para-
bolic interaction-induced quantum MR,

��xx�B�
�0

’
�!c��2 � 1

�kFl
lnT�; T� � 1; (2)

where !c � eB=mc is the cyclotron frequency and l �
vF� the transport mean free path. Indeed, a T-dependent
negative MR was observed in experiments [5] and attrib-
uted to the interaction effect. However, the experiments
[5] cannot be directly compared with the theory [1,4]
since they were performed at higher temperatures,
T� * 1. (In high-mobility GaAs heterostructures con-
0031-9007=03=90(7)=076801(4)$20.00 
�100 mK and becomes even smaller with improving
quality of samples.) There is thus a clear need for a theory
of the MR in the ballistic regime, T * 1=�.

In fact, the effect of interaction on the conductivity at
T * 1=� has attracted a great deal of interest in a context
of low-density 2D systems showing a seemingly metallic
behavior, d�=dT > 0 [6]. Recently, Zala, Narozhny, and
Aleiner [7] developed a systematic theory of the interac-
tion corrections valid for arbitrary T�. In the ballistic
range of temperatures, this theory (improving earlier
calculation of temperature-dependent screening [8]), pre-
dicts a linear-in-T correction to conductivity �xx and a
1=T correction to the Hall coefficient �xy=B at B ! 0,
and describes the MR in a parallel field.

The consideration of [7] is restricted, however, to clas-
sically weak transverse fields, !c� � 1, and to the white-
noise disorder. The latter assumption is believed to be
justified for Si-based and some p-GaAs structures, and
the results of [7] have been by and large confirmed by
most recent experiments [9] on such systems. On the other
hand, the random potential in n-GaAs heterostructures is,
as a rule, due to remote donors and has a long-range
character. Thus, the impurity scattering is predominantly
of a small-angle nature and is characterized by two
relaxation times, the transport time � and the single-
particle (quantum) time �s, with � 	 �s.

We present here a general theory of the interaction-
induced corrections to the conductivity of 2D electrons
valid for arbitrary temperatures, transverse magnetic
fields, and disorder range. We further apply it to the
problem of magnetotransport in a smooth disorder at
!c� 	 1 [10]. In the ballistic limit, T� 	 1 (where the
character of disorder is crucially important), we show
that while the correction to �xx is exponentially sup-
pressed for !c � T, a MR arises at stronger B where it
scales as B2T�1=2.

To find ����, we make use of the ‘‘ballistic’’ general-
ization of the Matsubara diffuson diagram technique of
Ref. [1]. We consider the exchange contribution first and
will discuss the Hartree term later on. The relevant dia-
2003 The American Physical Society 076801-1
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FIG. 1. Diagrams for the interaction correction to ���. The
wavy (dashed) lines denote the interaction (impurity scatter-
ing), the shaded blocks are impurity ladders, and the �=�
symbols denote the signs of the Matsubara frequencies. The
diagrams obtained by a flip and/or by an exchange � $ �
should also be included.
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denote the impurity-line ladders, which we term ‘‘ballis-
tic diffusons.’’ The temperature range of main interest in
the present Letter is restricted by T�s � 1, since at higher
T the MR will be small in the whole range of the quasi-
classical transport !c�s � 1 (see below). In this case the
ladders are dominated by contributions with many ( 	 1)
impurity lines. Our general formula below is, however,
valid irrespective of the value of T�s.

After the Wigner transformation, the ballistic diffuson
takes the form D�!; r;n; r0;n0� and describes the quasi-
classical propagation of an electron in the phase space [11]
(n is the direction of velocity on the Fermi surface). In
contrast to the diffusive regime, where D has a universal
and simple structure D�!;q� � 1=�Dq2 � i!� deter-
mined by the diffusion constant D only, its form in the
ballistic regime is much more complicated. We are able,
however, to get a general expression for ���� in terms of
the propagator D�!;q;n;n0�. The result reads

���� � � 2e2v2
F�

Z 1

�1

d!
2�

@
@!

�
!coth

!
2T

�

�
Z d2q

�2��2
ImU�!;q�B���!;q��; (3)

where U�!;q� is the interaction potential equal to a
constant V0 for pointlike interaction and to

U�!;q� �
1

2�
�

q� �1� i!hD�!; q�i�
(4)

for screened Coulomb interaction. For small-angle impu-
rity scattering the tensor B���!;q� in (3) is given by
076801-2
B���!;q� �
T��
2

hDDi�T�%

�
�%�
2

hDi � hn%Dn�i
�
T��

� 2T�%hn%Dn�Di � hDn�Dn�Di; (5)

where T�� � hn�Dn�ijq�0;!!0 � ���=e2v2
F�: The an-

gular brackets h. . .i in (4) and (5) denote averaging over
velocity directions, e.g., hnxDnxi � �2���2

R
d&1d&2 �

cos&1D�!;q;&1; &2� cos&2, where & is the polar angle
of n. The first term in (5) originates from the diagrams
(a), (b), and (c) in Fig. 1 (forming together the Hikami
box), the second term from (a), (f), and (g) [12], the third
term from (h), and the last one from (d) and (e).

In the more general situation, when the scattering is at
least partly of the large-angle character, the first term in
(5) acquires a slightly more complicated form,

��T��0 hDS�0�0Di � 2hDn�0Wn�0Di�T�0�; (6)

where W�n;n0� is the scattering cross section and Sxx �
Syy � W�n;n0�, Sxy � �Syx � !c=2��. In particular, for
the case of purely white-noise disorder [when � � �s and
W�n;n0� � 1=2���] and B � 0 we then recover (using
the explicit form of the ballistic propagator for this case)
the result for �� obtained in a different way in [7]. Need-
less to say, in the diffusive limit, we reproduce (for
arbitrary B and disorder range) the logarithmic correc-
tion (1) and (2) determined by the diagrams (a)–(e).

Before turning to the analysis of the results for the
strong B regime, we consider briefly the B � 0 case
assuming the ballistic temperature range T� 	 1. The
structures of Eqs. (3), (5), and (6) imply that the inter-
action correction is governed by returns of a particle to
the original point in a time t & T�1 � �. Such a quick
return may be induced by a single back-scattering pro-
cess, yielding the contribution ��xx � e2��W�2kF�T�.
For the case of white-noise disorder this reduces to
��xx � e2T�, in agreement with [7,8]. However, in a
smooth disorder with a correlation length d 	 k�1

F this
contribution is suppressed by the factor 2���W�2kF� �
e�kFd. The probability to return after many small-angle
scattering events is also exponentially suppressed for t �
�, yielding a contribution ��xx � exp�const�T��1=2�.
Thus, the interaction correction in the ballistic regime
is exponentially small at B � 0 for the case of smooth
disorder. Moreover, the same argument applies to the case
of a nonzero B, as long as !c � T.

The situation changes qualitatively in a strong mag-
netic field, !c� 	 1 and !c 	 T. The particle experi-
ences then within the time t� T�1 multiple cyclotron
returns to the region close to the starting point. The
corresponding ballistic propagator satisfies the equation
�

�i!� ivFq cos&�!c
@
@&

�
1

�
@2

@&2

�
D�!; q;&;&0� � 2���&�&0�: (7)

The approximate solution of (7) at !c� 	 1 has the form
076801-2
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D�!; q;&;&0� � expf�iqRc�sin&� sin&0�g

"
+�&�+�&0�

Dq2 � i!
�

X
n�0

ein�&�&0�

Dq2 � i�!� n!c� � n2=�

#
; (8)
1
GF(x) 3 GF(x)
where +�&� � 1� iqRc cos&=!c� and D ’ R2
c=2� in

strong B. Since characteristic frequencies in (3) are !�
T � !c, it is sufficient to keep only the first term in
square brackets in (8) to obtain the leading contribution.
Then hDi in (4) is given by

hDi � J20�qRc�=�Dq
2 � i!�; (9)

where J0�x� is the Bessel function. Furthermore, combin-
ing all four terms in (5), we get

Bxx�!; q� �
J20�qRc�

�!c��2
D�q2

�Dq2 � i!�3
: (10)

Note that Eqs. (9) and (10) differ from those obtained in
the diffusive regime by the factor J20�qRc� only. This is
related to the fact that the motion of the guiding center is
diffusive even on the ballistic time scale t � � (provided
t 	 !�1

c ), while the additional factor corresponds to the
averaging over the cyclotron orbit.

Substituting (10) into (3), and rescaling the momentum
q ! qRc � z, we see that all the B dependence drops out
from ��xx, and the exchange contribution in the case of
pointlike interaction reads

��xx � ��e2=2�2��V0G0�T��; (11)

G0�x� � �2x2
Z 1

0

du exp��u�

u3sinh2��x=u�
I0�u��1� u� � uI1�u��:

The Hartree term in this case is of the opposite sign and
twice larger due to the spin summation (we neglect the
Zeeman splitting). Since the relative correction to the
Hall conductivity turns out to be smaller by the factor
��!c���2 compared to (11), ��xy=�xy � ��xx=�xx, the
MR is given by ��xx=�0 � �!c��

2��xx=�0. The MR is
thus quadratic in !c, with the temperature dependence
determined by the function G0�T��, which is shown in
Fig. 2(a). It has the asymptotics G0�x� ’ � lnx� const at
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FIG. 2. Functions G0�T�� (a) and GF�T�� (b) determining the
T dependence of the exchange term for pointlike, Eq. (11), and
Coulomb, Eq. (12), interaction, respectively.

076801-3
x � 1 (diffusive regime) and G0�x� ’ c0x�1=2 with c0 �
31�3=2�=16

����
�

p
’ 0:276 at x 	 1 (ballistic regime). Let

us note that the crossover between the two limits takes
place at numerically small values T�� 0:1.

For the case of the Coulomb interaction the result turns
out to be qualitatively similar. Substituting (4), (9), and
(10) into (3), we get the exchange (Fock) contribution

��F
xx�B�
�0

� �
�!c��

2

�kFl
GF�T��;

GF�x� � 32�2x2
Z 1

0
dzz3J20�z�G1;3;2�z�;

Gjkl�z� �
X1
n�1

nf12�xn1� J20�z�� � 3� jJ20�z��z
2g

�4�xn� z2�kf4�xn1� J20�z�� � z2gl
;

(12)

with GF�x � 1� ’ � lnx� const and GF�x 	 1� ’
�c0=2�x�1=2; see Fig. 2(b).

We turn now to the Hartree term, assuming first � �
kF. The expression for its triplet part is analogous to (3)
with the replacement of U�!;q� by � 3

2U�0; 2kF sin
&�&0

2 �,
where & and &0 are starting and final angles of the
electron velocity. As to the singlet part, it is renormalized
by mixing with the exchange term, yielding

U�!; q� !
hU�0; 2kF sin

&�&0

2 �i �U�0; 2kF sin
&�&0

2 �

21� i!hD�!; q�i�2
:

After the angle integration, J20�z� in (10) is replaced by
��3y=2��

R
�
0 d&J0�2z sin&�=�y� 2 sin&� for the triplet,

and by J �y; z� � ��y=2��
R
�
0 d&J0�2z sin&� � J20�z��=

�y� 2 sin&� for the singlet term (y � �=kF). This yields
for the total Hartree contribution
0.01 0.1 1 10Tτ
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FIG. 3. Hartree contribution, GH�T��, for (a) weak interac-
tion, �=kF � 0:1; 0:2; 0:3; 0:5, and (b) strong interaction, F0 �
�0:3;�0:4;�0:5 (from bottom to top); (c) schematic plot of
MR ��xx�B� in different temperature regimes: (1) T1 � ��1;
(2) ��1 � T2 � TH; (3) T3 	 TH.
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��H
xx�B�
�0

�
�!c��2

�kFl
Gs

H�T�; y� � 3Gt
H�T�; y�� ’

�!c��2

�2kFl

8><
>:
y lny34 ln�T�� � lny�; T� � 1;
y ln2y�T��1=2�; 1 � T� � y�2;
�c0�T���1=2; T� 	 y�2;

Gs
H�x; y� � 32�2x2

Z 1

0
dzz3J �y; z�G2;2;3�z�;

Gt
H�x; y� �

�x2

4

Z 1

0

du

u3sinh2��x=u�

Z �

0
d&

y
y� 2 sin&

exp�2u sin2&��1� 2u sin2&�:

(13)
We see that at �=kF � 1 a new energy scale TH �
��1�kF=��2 arises where the MR changes sign.
Specifically, at T � TH the MR, ��xx � ��F

xx � ��H
xx,

is dominated by the exchange term and is therefore nega-
tive, while at T 	 TH the interaction becomes effectively
pointlike and the Hartree term wins, ��H

xx � �2��F
xx,

leading to a positive MR with the same �T���1=2 tem-
perature dependence; see Figs. 3(a) and 3(c).

If �=kF is not small, the exchange contribution (12)
remains unchanged, while the Hartree term is subject to
strong Fermi-liquid renormalization [1,7] and is deter-
mined by angular harmonics F�;�

m of the Fermi-liquid
interaction F�;��3�. The formula for arbitrary T� be-
comes then rather cumbersome [13]; here we restrict
ourselves to a discussion of limiting cases. In the diffu-
sive regime, T � 1=�, we reproduce the known result
[1,7] GH�T�� � 31� ln�1� F�

0 �=F
�
0 � lnT�. In the ballis-

tic limit, T 	 1=�, we find for the Hartree contribution

GH�T�� � �
c0
2

"X
m�0

F�
m

1� F�
m
� 3

X
m

F�
m

1� F�
m

#
1������
T�

p :

Finally, within a frequently used approximation neglect-
ing all Fm with m � 0, the Hartree term takes the form of
Eq. (12) with an additional overall factor of 3 and with
J20�z� multiplied by F�

0 =�1� F�
0 � everywhere; the result is

shown in Fig. 3(b) for several values of F�
0 .

In summary, we have derived a general formula for the
interaction-induced quantum correction ���� to the con-
ductivity tensor of 2D electrons valid for arbitrary tem-
perature, magnetic field, and disorder range. It expresses
���� in terms of classical propagators in random poten-
tial (ballistic diffusons). Applying this formalism, we
have calculated the interaction contribution to the MR
in strong B in a system with smooth disorder. We have
shown that the parabolic MR found earlier in the diffu-
sive limit T� � 1 persists in the ballistic regime T� * 1,
where it scales as T�1=2. Further applications of our
formalism [13] include the model of mixed disorder
(smooth random potential with rare short-range scatter-
ers) [3], periodically modulated systems, and frequency-
dependent MR.
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theoretical predictions.
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