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Nonlinear Theory of Void Formation in Colloidal Plasmas
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A nonlinear time-dependent model for void formation in colloidal plasmas is proposed. For
experimentally relevant initial conditions, the model describes the nonlinear evolution of a zero-
frequency linear instability that grows rapidly in the nonlinear regime and subsequently saturates to
form a void. A number of features of the model are consistent with experimental observations under
laboratory and microgravity conditions.
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Samsonov and Goree [2] (hereafter, SG) suggested that
the ion drag force plays a crucial role in causing the initial
instability, which can be described as follows. Imagine a

(b) a nonlinear saturation mechanism for the instability,
and (c) the void as one of the possible nonlinearly satu-
rated states, dynamically accessible from the initially
A colloidal (or dusty) plasma is an electron-ion plasma
containing a dispersed phase of micron-size dust par-
ticles. In typical plasma conditions, these particles usu-
ally acquire a large negative charge. As a result of the
strong Coulomb coupling between the dust particles, a
colloidal plasma may undergo phase transitions and exist
in a liquid or a crystalline state.

Recently, a number of colloidal plasma experiments, in
laboratory as well as under microgravity conditions, have
shown the spontaneous development of voids [1–5]. A
void is typically a small and stable centimeter-size region
(within the plasma) that is completely free of dust par-
ticles and characterized by sharp boundaries. In the mi-
crogravity experiment [3], condensed states are produced
with a liquidlike phase of dust adjacent to crystalline
regions. The dynamics of void formation is not well
understood and their spontaneous formation presents a
significant impediment to the development of three-
dimensional colloidal plasma crystals [3].

Voids develop not only in colloidal plasmas but also in
colloidal polymer dispersions [6]. There also, the precise
theoretical mechanism is not well understood although
some researchers have suggested that there exists an
attractive component in the potential between colloidal
particles. This continues to be a subject of considerable
research as well as controversy in the colloidal polymer
community [7–10].

In the laboratory experiments involving colloidal plas-
mas [2], voids are seen to develop from a uniform dust
cloud as a consequence of an instability when the dust
particles have grown to a sufficiently large size. The
instability is first seen as a filamentary mode, which
exhibits a sudden onset. The spectrum of the filamentary
mode is observed to be broadband, with a peak at about
100 Hz. After onset, the filaments are seen to evolve
rapidly (in about 10 ms) to a nonlinear saturated state
containing a void.

In order to account for their experimental results,
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local depletion of negatively charged dust particles within
a spatially uniform dusty plasma. The depletion will
produce a positive space charge with respect to the sur-
rounding plasma, and, hence, an electric field that points
outward from the region of reduced dust density. This
electric field will cause an inward electrical force, Fe, on
negatively charged dust particles that tends to restore the
dust density to its equilibrium value, and an outward
force, Fd, due to the ion drag (in the direction of the
ion flow) that tends to expel dust particles from the region
of depletion. If Fd > Fe, which occurs when dust par-
ticles have grown to a sufficient size, an instability grows,
deepening the initial density depletion.

Theoretical analyses stimulated by SG fall into two
types: linear stability analyses that include the effect of
ion drag and other additional effects [11–16], and non-
linear but steady-state analyses that yield void solutions
[17–20]. As yet, there is no nonlinear time-dependent
model that describes the spontaneous development of
the linear instability as well as its subsequent saturation
to produce a void. A recent two-dimensional numerical
simulation [21] attempts to make progress towards this
objective but concludes that the simulation results cannot
explain the appearance of the void in the microgravity
experiment [3].

In this paper, we propose a basic, time-dependent, self-
consistent nonlinear model for void formation in a dusty
plasma. To the best of our knowledge, this is the first
nonlinear time-dependent model that accounts for most
significant observed features of the void instability
caused by the ion drag, including the sudden onset of
the nonlinear instability and the broadband frequency
spectrum. An interesting feature of this model is that it
does not invoke explicitly an attractive potential between
dust particles which is sometimes used to explain voids in
colloidal suspensions and plasma crystals [5].

Our basic fluid model for voids contains three ele-
ments: (a) an initial instability caused by the ion drag,
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unstable equilibrium. For the initial instability, we
choose a simple variant of the zero-frequency mode
described by D’Angelo [11] which grows when Fd > Fe.
The saturation mechanism we adopt is relevant for colli-
sional voids where ions achieve near-thermal velocities in
the void region. In this regime, Fokker-Planck theory
shows that Fd initially increases with ion velocity vi,
attains a maximum for vi � vthi, where vthi is the ion
thermal velocity, and decreases for vi > vthi [17]. As the
linear instability grows, the ions are initially accelerated
in the growing electric field, and Fd initially increases.
Eventually, as the ions are accelerated to speeds larger
than the ion thermal speed, Fd decreases to balance Fe
and thus saturate the instability. (The reduction in Fd can
also be brought about by nonlinearity in the ion mobility;
however, we will not consider this mechanism here.) We
demonstrate by analysis and numerical simulation that, in
the saturated state, a stable void is formed.

We now describe the approximations and simplifica-
tions made in reducing the fluid equations for dust, elec-
trons, and ions [11,13] to our model equations. The
one-dimensional continuity and momentum equations
for dust are given, respectively, by

@tnd � �@x�ndvd� �D@2xnd; (1)

and

md�@t � vd@x�vd � �ZeE� Fd � �dnmdvd

� �Td=nd�@xnd: (2)

Here, nd is the number density of dust particles of charge
�Ze, massmd, and temperature Td, vd is the fluid velocity
of dust, D is a particle diffusion coefficient for dust, E is
the electric field, and the term �dnmdvd represents the
frictional drag on dust grains by neutral atoms, where �dn
is the dust-neutral collision frequency. We approximate
the nonlinear ion drag force, Fd, by the expression Fd �
md�divthiu=�b� u3�, where u � vi=vthi, �di is the ion-
dust collision frequency, and b is a positive constant.
This nonlinear expression, with b � 1:6, fits well [22]
the numerically calculated Fd from Fokker-Planck
theory in the range 0:1 � u � 5 (see Fig. 3 of [17]).

For electrons, each of charge �e, we neglect all iner-
tial effects in their momentum equation and write
�Te=ne�@xne � �eE, where ne�Te� is the electron density
(temperature) [11,13]. The electric field E is determined
by the self-consistent Poisson’s equation @xE � 4�e�ni �
ne � Znd�, where ni�Ti� is the ion density (temperature).
We neglect ion inertia and take the ion motion to be
mobility limited, that is, vi � eE=�mi�in�, where �in is
the ion-neutral collision frequency [2]. Under the condi-
tions of void formation, ions respond on a time scale
given by xv=vthi � 10 �s, where xv � 1 cm while the
dust dynamics occurs on the typical time scale !�1

pd �
1 ms, where!pd is the dust plasma frequency. On the slow
dust time scale, we assume that the ion density adjusts
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quickly and attains a quasisteady constant value. This
assumption of constant ni ensures that a constant supply
of ions is maintained at all times to sustain a continuous
ion wind in the void. In our model, an ionization mecha-
nism is thus assumed to be present implicitly, but does not
enter the governing equations explicitly.

With the approximations discussed above, our model
equations (in dimensionless form) are

@xE � 1� "d � "; �1="�@x" � ���1
i E; (3)

@tvd � 	�1� a=�b� u3�
E� �0vd � ��="d�@x"d; (4)

u � �E; (5)

@t"d � �@x�"dvd� �D0@2x"d; (6)

where we have neglected the convective nonlinearity
in the dust equation and defined u � juj, "d � Znd=ni0,
" � ne=nio, a � md�di=�miZ�in�, �0 � �dn=!pd, �d;i �
Td;i=Te, � � �d=Z, � � !pi=��in�i�, and D0 �
D�2i !pd= 2

di. In these equations, the distance x is normal-
ized by  di=�i, where  di is the ion Debye length, time t is
normalized by !�1

pd , the densities of dust and ions are
normalized by the initial ion density ni0, and the electric
field E is normalized by the quantity �Te=e di�. The last
terms in (4) and (6) are due to dust pressure and diffusion,
respectively.

We first carry out a simple equilibrium and stability
analysis of Eqs. (3)–(6) without electrons. (This is done
for analytical simplicity and physical insight, but is fol-
lowed up by a numerical calculation that includes elec-
trons.) Note that these equations are satisfied identically
for a homogeneous field-free equilibrium with E � 0,
"d � 1, and vd � 0. Linearizing (3)–(6) about this equi-
librium and assuming for simplicity that D0 � �0 � 0, it
is straightforward to show that this equilibrium is unsta-
ble to a zero-frequency (that is, purely growing) mode of
wave number k when a=b > 1� �k2. The mode with the
largest growth rate has k � 0. Since a=b � Fd=Fe, the
instability condition for the fastest growing mode then
reduces to Fd > Fe, which is exactly the condition dis-
cussed earlier in this paper. The linear instability satu-
rates when Fd is reduced via the cubic nonlinearity in (4)
to balance Fe. To investigate whether there is a steady-
state solution containing a void that the unstable equilib-
rium may evolve to, we set @=@t � 0 in (3)–(6), and
assume that a void extends from x � 0 to x � xv, where
"d � 0. Consequently, from (1), we obtain E � x in the
range 0 � x < xv. In this region, we obtain the condition
Fd > Fe, which causes the complete expulsion of dust
particles. At the boundary x � xv, determined by the
relation �1� a=�b��3x3v� � 0, we obtain Fd � Fe
which continues to holds between x � xv and the dust
cloud boundary x � xc. In the range xv < x � xc, we
obtain "d � 1 and E � �a� b�1=3=�. Although there
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are no dust particles in the void, by (4) there is a steady
velocity profile given by vd � ��1

0 x	�1� a=�b��3x3�

which yields vd � 0 at the two end points (x � 0 and
x � xv) of the void. Thus, we have obtained a steady
FIG. 1. The time evolution of the dust density at t � 0, 2, and
20. The three-dimensional solutions are obtained from the one-
dimensional solution nd�x� by assuming rotational symmetry
about the vertical axis. Note the sharp boundary of the void
region at t � 20. The physical parameters are given in the text.
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nonlinear solution containing a void that the initially
unstable equilibrium can evolve into. It is easy to show
that this solution is linearly stable.

We now integrate (3)–(6) numerically in the range 0 �
x � xc to demonstrate the growth of the linear instability
from an initially unstable equilibrium and its evolution to
form a saturated void with the attributes discussed above.
Experimental observations show that, during the forma-
tion of the void, particles continue to escape from the
cloud, so we assume that the dust cloud boundary x � xc
is open (that is, @xnd � 0 at x � xc). It is also assumed, as
in the microgravity experiment [3], that the solutions are
symmetric around x � 0, where vd�0; t� � E�0; t� � 0
for all t. The equations are evolved from a homoge-
neous field-free equilibrium with E � 0, "d � 0:001, " �
0:999, and vd � 0, with the parameters md=mi �
5� 108, �i � 0:125, �in � 5� 106 s�1, �dn � 6�
103 s�1, and !pd � 3� 103 s�1. For these parameters,
which are relevant for the microgravity experiment [3],
FIG. 2. (a) A typical frequency spectrum S�!� � jnd�!�j
2 of

the dust density during the temporal evolution. (b) The non-
linear growth rate % � jndj

�2@jndj
2=@t of the instability,

showing a short-lived linear growth phase, a much faster
nonlinear growth phase, and a saturation phase. The physical
parameters are the same as for Fig. 1.
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FIG. 3. Plots of the electron density (ne), electric field (E),
and dust density (nd) in the saturated state of the instability.
The physical parameters are the same as for Fig. 1.
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we obtain a � 7:5, b � 1:6, �0 � 2, � 
 0:001, � � 1:5,
and D0 
 10�2. In Fig. 1, we show various stages of the
evolution of the void density when the initial state con-
sists of a uniform equilibrium dust density and a super-
position of fluctuations. The three-dimensional plots of
the dust density at t � 0, 2, and 20 are obtained from the
one-dimensional solution by assuming rotational symme-
try about the vertical axis. Note the sharp boundary of the
void region at t � 20 when the system attains a steady-
state. The particles originally contained in the void region
are expelled in the early stages of the dynamics and
escape from the cloud boundary at x � xc � 4. In
Fig. 2(a), we show a typical frequency spectrum S�!� �
jnd�!�j

2 of the dust density during the temporal evolution
of the instability. [Here nd�!� is the fast Fourier trans-
form of nd�t�.] The spectrum shows that the initially
unstable zero-frequency modes evolve nonlinearly into
a broadband of finite frequencies with a peak of around a
few tens of Hz. This is roughly consistent with experi-
mental observations of a broadband of modes with a
maximum around 100 Hz [3]. The nonlinear growth
rate of the instability, defined by the relation, % �
jndj�2@jndj2=@t and shown in Fig. 2(b), increases very
rapidly by nearly an order of magnitude of its linear value
before it reduces in the final stages of saturation. This is
consistent with the near-explosive growth of the insta-
bility seen in the laboratory experiments [2]. We also find
that the size of the void increases with �in, which is also
consistent with the experimental observation that the void
size increases with neutral gas pressure. In Fig. 3, we
show the steady-state profiles of the electric field, the
electron density, and the dust density. The electric field
is low in the central region, acquires ambipolar values in
the middle region, and rises to large values near the void
boundary where it balances the large ion drag force.
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In summary, we have presented a basic nonlinear
time-dependent model that describes the evolution of a
zero-frequency linear instability that grows faster than
exponential in the nonlinear regime and subsequently
saturates to form a void. This model can provide the
foundation for more complete analyses in two dimen-
sions, including a more detailed account of ion dynamics,
ionization physics, and effects such as charge variation
and the thermophoretic force.
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