
P H Y S I C A L R E V I E W L E T T E R S week ending
21 FEBRUARY 2003VOLUME 90, NUMBER 7
Optimal Lattice Domain-Wall Fermions

Ting-Wai Chiu*
Department of Physics, University of Washington, Seattle, Washington 98195-1560

Department of Physics, National Taiwan University, Taipei, Taiwan 106, Taiwan
(Received 30 October 2002; published 19 February 2003)
071601-1
I show that the conventional formulations of lattice domain-wall fermion with any finite Ns (in the
fifth dimension) do not preserve the chiral symmetry optimally and propose a new action which
preserves the chiral symmetry optimally for any finite Ns.
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Currently, there are many interesting physics issues in
supersymmetry, supergravity, and superstring theory that
require nonperturbative (numerical) studies, in addition
to those long-standing ones in QCD. A viable approach is
to formulate these theories on a spacetime lattice with
domain-wall fermions (DWF). The basic idea of DWF
[1,2] is to use an infinite set of coupled Dirac fermion
fields [ s�x�; s 2 ��1;1�] with masses behaving like a
step function m�s� � m��s� such that Weyl fermion states
can arise as zero modes bound to the mass defect at s � 0.
However, if one uses a compact set of masses, then the
boundary conditions of the mass (step) function must lead
to the occurrence of both left-handed and right-handed
chiral fermion fields, i.e., a vectorlike theory. For lattice
QCD with DWF [3], in practice, one can use only a finite
number (Ns) of lattice Dirac fermion fields to set up the
domain wall; thus the chiral symmetry of the light fer-
mion field is broken. Now the relevant question is how to
construct the couplings between these Ns lattice Dirac
fermion fields such that the exact chiral symmetry can be
preserved optimally or, in other words, the residual mass
of the quark field is minimal. Similarly, in numerical
studies of N � 1 supersymmetric SU�n� Yang-Mills
theory withNs domain-wall fermions, it is vital to imple-
ment the chiral symmetry of the gaugino optimally such
that the supersymmetry can most easily emerge as an
‘‘accidental’’ continuum symmetry on the lattice. In this
Letter, I discuss how to preserve the chiral symmetry of
the light fermion fields optimally, for any finite Ns (in the
fifth dimension).

First, we examine the domain-wall fermion action [In
this Letter, we suppress the lattice spacings (a and a5), as
well as the Dirac and color indices, which can easily be
restored. Also, it is understood that one can replace Dw
with its improved lattice Dirac operator, e.g., including
the cloverlike terms.] with open boundary conditions [4],
in the context of lattice QCD,

Adwf �
XNs
s;s0�1

X
x;x0

�  �x; s��Dw�x; x
0��s;s0

	 �x;x0D5�s; s0�
 �x0; s0�; (1)

whereDw is the 4DWilson-Dirac operator with a negative
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parameter �m0

Dw �
X4
��1

��t� 	W �m0; m0 2 �0; 2�;

t��x; x0� �
1

2
�U��x��x0;x	� �Uy

��x0��x0;x��
;

W�x; x0� �
X4
��1

1

2
�2�x;x0 �U��x��x0;x	� �Uy

��x0��x0;x��
;

and

D5�s; s
0� � �s;s0 �P��s0;s	1 � P	�s0;s�1;

P� �
1

2
�1� �5�:

The boundary conditions are fixed by P	 �x;0� �
P� �x;Ns 	 1� � 0. The quark fields coupling to physi-
cal hadrons can be constructed from the left and right
boundary modes

q�x� � P� �x;1� 	P	 �x;Ns�;

�qq�x� � �  �x;1�P	 	 �  �x;Ns�P�:

Then the quark propagator in a background gauge field
can be evaluated [5,6] as

hq�x� �qq�y�i �
1� �5S
1	 �5S

; (2)

where

S �
1� T
1	 T

; (3)

T �
�1�H�Ns

�1	H�Ns
; (4)

H � �5
Dw

2	Dw
: (5)

In the limit Ns ! 1, S! H=
�������
H2

p
(the sign function of

H), then the quark propagator (2) is chirally symmetric.
However, for any finiteNs, (2) does not break the chiral

symmetry in the minimal way. In other words, S (3) is not
the optimal approximation for the sign function of H.
This can be shown as follows.

First, we rewrite (3) as the partial fraction
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S �

(
H� 1Ns 	

2
Ns

P
n
l�1

bl
H2	dl

� � HR�n;n��H2�; Ns � 2n	 1 �odd�;

H 2
Ns

P
n
l�1

bl
H2	dl

� HR�n�1;n��H2�; Ns � 2n �even�;
(6)
where

bl � sec2
�
�
Ns

�
l�

1

2

��
; dl � tan2

�
�
Ns

�
l�

1

2

��
:

Here the symbol r�n;m��x� denotes an irreducible rational
polynomial of the form

r�n;m��x� �
pnx

n 	 pn�1x
n�1 	 � � � 	 p0

qmxm 	 qm�1xm�1 	 � � � 	 q0
;

�m � n; pi; qi > 0�:

Note that the coefficients bl and dl in (6) are indepen-
dent of (the ratio of the maximum to the minimum) the
eigenvalues of H2. As it will become clear later, this
feature already rules out the possibility that R�n�1;n��H2�
or R�n;n��H2� can be the optimal rational approximation
of �H2��1=2.

According to de la Vallée–Poussin’s theorem and
Chebycheff ’s theorem [7], the necessary and sufficient
condition for r�n;m��x� to be the optimal rational polyno-
mial of the inverse square root function x�1=2, 0< xmin �
x � xmax is that ��x� � 1�

���
x

p
r�n;m��x� has an n	m	 2

alternate change of sign in the interval �xmin; xmax
, and
attains its maxima and minima (all with equal magni-
tude), say,

��x� � ��;	�; . . . ; ��1�n	m	2�

at consecutive points (xi; i � 1; . . . ; n	m	 2)

xmin � x1 < x2 < � � �< xn	m	2 � xmax:

Now, for Ns � 2n, ��x� � 1� xR�n�1;n��x2� is non-
negative for x > 0. Thus ��x� does not have any alter-
nate change of sign for any intervals in �0;1�. Similarly,
for Ns � 2n	 1, ��x� � 1� xR�n;n��x2� is positive for
0< x< 1, zero at x � 1, and negative for x > 1. Thus
��x� has only two alternate changes of sign for any Ns �
2n	 1. Therefore, according to de la Vallée–Poussin’s
theorem and Chebycheff ’s theorem, we conclude that
both R�n�1;n��x2� and R�n;n��x2� cannot be the optimal
rational approximation for �x2��1=2, and (6) is not the
optimal rational approximation for the sign function of
H. In other words, for any finite Ns, the domain-wall
fermion action (1) does not preserve the chiral symmetry
optimally, which, in fact, underlies the essential diffi-
culties encountered in lattice QCD calculations with
domain-wall fermions.

Note that even if one projects out the low-lying ei-
genmodes of H [8] (or just the boundary term of the
transfer matrix [9]), treats them exactly, and transforms
H into one with narrower spectrum (i.e., with a smaller
value of the ratio %2max=%2min) such that the chiral symme-
try of (2) is improved, however, in principle, (6) still does
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not satisfy the criterion for the optimal rational approxi-
mation of the sign function of H, regardless of the spec-
trum of H.

The optimal rational approximation for the inverse
square root function was first obtained by Zolotarev in
1877 [10], using Jacobian elliptic functions. A detailed
discussion of Zolotarev’s result can be found in
Akhiezer’s two books [7,11]. Unfortunately, Zolotarev’s
optimal rational approximation has been overlooked by
the numerical algebra community until recent years.

For lattice QCD with DWF, the relevant problem is how
to construct a DWF action such that the operator S in the
quark propagator (2) is equal to

S � HRZ�H2�;

where RZ�H2� is the Zolotarev optimal rational approxi-
mation for the inverse square root of H2. In general, we
have two options for RZ, namely,

R�n;n�
Z �H2� �

d0
%min

Yn
l�1

1	 h2=c2l
1	 h2=c2l�1

and

R�n�1;n�
Z �H2� �

d00
%min

Qn�1
l�1 �1	 h2=c02l�Q
n
l�1�1	 h2=c02l�1�

;

where h2 � H2=%2
min, %

2
min (%2

max) is the minimum (maxi-
mum) of the eigenvalues ofH2, and the coefficients d0, d00,
cl, and c0l are expressed in terms of elliptic functions [11]
with arguments depending on n and %2max=%2min.

Now if one could construct a domain-wall fermion
action such that the operator T in (4) is replaced with

T �
YNs
s�1

1�!sH
1	!sH

; (7)

then one can solve for f!sg such that the operator S (3) is
equal to

S �
1�T

1	T
�

(
HR�n;n�

Z �H2�; Ns � 2n	 1;
HR�n�1;n�

Z �H2�; Ns � 2n:
(8)

Note that one does not have the option to put different
weights for H in the numerator and the denominator of
(7), since the optimal rational approximation of the sign
function of H is equal to H times the optimal rational
approximation of �H2��1=2. Obviously, the highest degree
n one can obtain with Ns flavors is only �Ns2 
.

Nevertheless, it seems to be nontrivial to implement the
weights f!sg into the DWF action (1) such that (7) can be
reproduced.
071601-2



P H Y S I C A L R E V I E W L E T T E R S week ending
21 FEBRUARY 2003VOLUME 90, NUMBER 7
Instead of working with the domain-wall fermion ac-
tion (1), I consider one of its variants [12], which differs
from (1) by replacing �x;x0D5�s; s0� with

D5�x; s; x
0; s0� � �x;x0�s;s0 	 �Dw � 1�x;x0P��s0;s	1

	 �Dw � 1�x;x0P	�s0;s�1: (9)

Then the quark propagator in a background gauge field
can be evaluated [9] as

hq�x� �qq�y�i �
1� �5Sw
1	 �5Sw

; (10)

where Sw is the same as (3) except for substitutingH with
Hw � �5Dw. Evidently, (10) does not preserve the chiral
symmetry optimally, the argument is the same as the case
of (2).

In view of (7) and (8), now it is clear how to construct
the optimal domain-wall fermion action on the lattice.
Explicitly, it reads

A�
XNs
s;s0�1

X
x;x0

�  �x;s���1	!sDw�x;x0�s;s0

� �1�!sDw�x;x0P��s0;s	1

��1�!sDw�x;x0P	�s0;s�1
 �x0; s0�

(11)

with weights

!s �
1

%min

������������������������������������
1�*02sn2�vs;*

0�

q
; (12)

where sn�vs;*0� is the Jacobian elliptic function with
argument vs (13) and modulus *0 �

������������������������������
1�%2

min=%
2
max

q
(%2max and %2

min are the maximum and the minimum of
the eigenvalues of H2

w), and f!sg are obtained from the
roots �us �!�2

s ; s� 1; . . . ;Ns� of the equation

�Z�u� �

(
1�

���
u

p
R�n;n�
Z �u� � 0; Ns � 2n	 1;

1�
���
u

p
R�n�1;n�
Z �u� � 0; Ns � 2n:

It can be shown that the argument vs in (12) is

vs � ��1�s�1M sn�1

 �����������������
1	 3%

�1	%�3

s
;
��������������
1�%2

p !
	

�
s
2

�
2K0

Ns
;

(13)

where

%�
YNs
l�1

�2�2lK
0

Ns
;*0�

�2��2l�1�K0

Ns
;*0�

; (14)

M�
Y�Ns2 

l�1

sn2��2l�1�K0

Ns
;*0�

sn2�2lK
0

Ns
;*0�

; (15)

K0 is the complete elliptic integral of the first kind with
071601-3
modulus *0, and � is the elliptic theta function. From
(12), it is clear that %�1

max �!s � %�1
min since sn2�; � � 1.

The quark propagator in a background gauge field can
be derived as

hq�x� �qq�y�i �
1� �5Sopt

1	 �5Sopt
; (16)

where Sopt is the same as (8) except substituting H
with Hw.

Since the chiral symmetry of (16) is equivalent to
S2
opt � 1, its breaking due to a finite Ns can be measured

in terms of the deviation

�Z � max
8 Y�0

�������Y
yS2

optY

YyY
� 1

�������;
which has a theoretical upper bound [13], 2�1� %�=
�1	 %�, where % is defined in (14), a function of Ns and
b � %2max=%

2
min. In practice, with Ns � 32, one should

have no difficulties to achieve �Z < 10�12 for any gauge
configurations on a finite lattice (say, 163 � 32 at
0 � 6:0).

It is simple to incorporate the bare quark mass mq by
adding the following terms:

mq

2m0

X
x;x0

� �  �x; 1��1�!1Dw�x;x0P	 �x0; Ns�

	 �  �x;Ns��1�!NsDw�x;x0P� �x
0; 1�
;

to the optimal DWF action (11), and changing the bound-
ary conditions to

P	 �x; 0� � �
mq

2m0
P	 �x;Ns�;

P� �x;Ns 	 1� � �
mq

2m0
P� �x; 1�:

After introducing pseudofermions (Pauli-Villars fields)
with fixed mass mq � 2m0, one can derive the effective
4D lattice Dirac operator for the internal quark loops as

D�mq� � r�Dc 	mq��1	 rDc�
�1; r �

1

2m0
; (17)

where rDc denotes the inverse of the massless quark
propagator (16) which becomes chirally symmetric in
the limit Ns ! 1. The exponential locality of D (17)
(for any mq and Ns) has been asserted for sufficiently
smooth gauge background [14].

In the massless limit (mq � 0) and Ns ! 1, D (17) is
exactly equal to the overlap Dirac operator [15,16], and
satisfies the Ginsparg-Wilson relation [17]

D�5 	 �5D � 2D�5D:

This implies that D is topologically proper (i.e., with the
correct index and axial anomaly), similar to the case of
overlap Dirac operator. For any finite Ns, D is exactly
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TABLE I. The precision of chiral symmetry of the massless
quark propagator in a gauge background on the 84 lattice at 0 �
6:0, for various domain-wall fermion actions with Ns � 16.
(Note that in the limit Ns ! 1, 1! 0 for all DWF actions.)

DWF action 1�m0 � 1:0� 1�m0 � 1:8�

Shamir (1) 4:3� 10�5 1:9� 10�5

Borici (1) and (9) 5:4� 10�4 1:0� 10�4

Improved DWF (18) 2:4� 10�6 3:5� 10�8

Optimal DWF (11) 8:8� 10�9 3:8� 10�10
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equal to the overlap Dirac operator with �Hw�
�1=2 ap-

proximated by Zolotarev rational polynomial.
From (17), the valence quark propagator coupling to

physical hadrons can be expressed as

�Dc 	mq�
�1 � r�1� rmq�

�1�D�1�mq� � 1
;

whereD�1�mq� can be computed via the five-dimensional
lattice Dirac operator of optimal DWF. Evidently, the
valence quark propagator of optimal DWF is exactly
equal to that of the overlap with Zolotarev approximation.
Preliminary numerical results have demonstrated that the
quark propagator of optimal DWF with Ns � 2n is pre-
cisely equal to that of the overlap with �H2

w�
�1=2 approxi-

mated by R�n�1;n�
Z �H2

w�. (The relative error between these
two quark propagators is always less than 10�7 for stop-
ping criterion 10�11 in the conjugate gradient loops.)

A simple way to improve the chiral symmetry of DWF
action (1) is to replace Dw with !sDw,

A0
dwf �

XNs
s;s0�1

X
x;x0

�  �x; s��!sDw�x; x0��s;s0

	 �x;x0D5�s; s0�
 �x0; s0�; (18)

where f!sg are given in (12). It is easy to see that in
the limit a5 ! 0, both (11) and (18) give the same quark
propagator (16) with optimal chiral symmetry. In Table I,
the precision of chiral symmetry of each DWF action
(with Ns � 16) discussed above is measured in terms of
1 � maxi;j j�D

�1�5 	 �5D
�1�ijj, where D�1 � hq �qqi is

the quenched massless quark propagator (with one of its
end points fixed at origin) in a gauge background gener-
ated with Wilson gauge action at0 � 6:0 on the 84 lattice,
and the ranges of the indices are 1 � i � 12� 84, 1 �
j � 12. The eigenvalues of Hw are bounded as j%�Hw�j 2
�0:1848; 6:5348
 for m0 � 1:0, while j%�Hw�j 2
�0:0946; 5:7484
 for m0 � 1:8. The quark propagators
are computed by conjugate gradient with stopping crite-
rion 10�11. Evidently, the improved DWF action (18)
preserves the chiral symmetry much better than
071601-4
Shamir’s action and Borici’s variant, and the optimal
DWF (11) is the best among these DWF actions. Finally,
we note that (18) can easily be implemented for machin-
eries already geared to (1).

In summary, the problem how to construct a DWF
action such that the effective 4D lattice Dirac operator
can preserve the chiral symmetry optimally for any given
finite Ns has been solved in (11). It provides a better
understanding of exact chiral symmetry on a finite lattice,
as well as the optimal way to tackle nonperturbative
issues in QCD or supersymmetric QFTs.
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