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Optimization of Robustness and Connectivity in Complex Networks

Benjamin Shargel,1 Hiroki Sayama,1,2 Irving R. Epstein,1,3 and Yaneer Bar-Yam1

1New England Complex Systems Institute, Cambridge, Massachusetts 02138
2Department of Human Communication, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

3Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454
(Received 22 April 2002; published 13 February 2003)
068701-1
Scale-free networks rely on a relatively small number of highly connected nodes to achieve a high
degree of interconnectivity and robustness to random failure, but suffer from a high sensitivity to
directed attack. In this paper we describe a parametrized family of networks and analyze their
connectivity and sensitivity, identifying a network that has an interconnectedness closer to that of a
scale-free network, a robustness to attack closer to that of an exponential network, and a resistance to
failure better than that of either of those networks.
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tivity close to the peak value in P�k�, but the existence of
an exponential tail of more connected nodes makes such

to k=2 nodes in the network, where each node again has
the probability

Q
�i�0 of being selected.
Many complex biological, social, and engineered sys-
tems can be modeled as inhomogeneous networks, whose
connectivity distributions follow a power law, P�k� �
k��, for large k [1–5]. A handful of highly connected
nodes act as linchpins holding the scale-free network
together, shortening the paths between arbitrarily chosen
nodes and thereby increasing the network’s interconnec-
tivity. Their reliance on these nodes, however, makes
these networks sensitive to targeted attack [6–10]. Ex-
ponential, or purely random networks [11], are less inter-
connected and tolerant to failure, but are more robust to
attack. Here we present a more general class of complex
networks, of which scale free and exponential networks
are special cases, by parametrizing two aspects of net-
work construction: growth and preferential attachment.
We find that these parameters can be optimized to pro-
duce a network that has an interconnectedness close to a
scale-free network, a robustness to attack similar to an
exponential network, and a resistance to failure that
improves on both random and scale-free networks.

The two types of network perturbation we examine
here are failure and attack, the removal, respectively, of a
random node or of the most connected node in the net-
work [6–8]. The measure of a network’s response to fail-
ure or attack is the increase in its diameter d, the average
shortest path between pairs of nodes in the network.

Exponential networks can be constructed by creating N
nodes initially, then randomly connecting pairs of nodes.
The randomness inherent in this procedure ensures that
no node is more likely to attain a significantly higher
connectivity than any other. Scale-free networks, on the
other hand, are built up over time with the addition of
nodes that selectively connect to existing members of the
network. The higher the connectivity of a given node, the
more likely it is to receive additional connections, accord-
ing to the probability

Q
�i� � ki=

P
j kj.

Most nodes in an exponential network have a connec-
0031-9007=03=90(6)=068701(4)$20.00 
networks more sensitive to attack than to failure. This
difference is, however, much more dramatic in the scale-
free network. Indeed, relative to an exponential network,
the connectivity of a scale-free network is concentrated
in a few highly connected nodes, leaving the network
more vulnerable to attack, but not to failure, because the
probability of a critical node’s failing is quite small.

The construction of scale-free networks differs from
that of exponential networks in that it involves growth
and preferential attachment. To examine a larger space of
possible networks, we introduce two parameters, p and g,
corresponding to preferential attachment and growth,
respectively. Each parameter varies continuously from 0
to 1, where 0 indicates that preferential attachment or
growth was not used in network construction, 1 signifies
that the relevant process was employed to the fullest
extent. The exponential network can be generated with
p � g � 0, and the scale-free with p � g � 1. The case
�p; g� � �0; 1� has been considered by Callaway et al. [12]
Our goal of optimizing robustness will lead us to consider
the properties of the �p; g� � �1; 0� network.

We generate networks of N nodes and E edges that
depend on two parameters p and g as follows. (i) Let k �
2E=N be the average connectivity of the network, I �
�1� g�N be the number of nodes initially created, and
G � gN be the number of nodes subsequently grown onto
the network. (ii) Create I nodes. (iii) Repeat Ik=2
times: Connect two nodes chosen from the probability dis-
tribution

Q
�i�0 � min�pkmax;max�ki; 1��=

P
j min�pkmax;

max�kj; 1��, where kmax is the maximum connectivity in
the network. If the nodes are already connected, pick
again. The

Q
�i�0 distribution is similar to the

Q
�i� dis-

tribution, except that instead of being purely linear, there
is a cutoff point at pkmax, where the distribution becomes
flat. Thus, the smaller p, the flatter the distribution. Note
that disconnected nodes have a nonzero chance of being
chosen. (iv) Repeat G times: Create a node and connect it
2003 The American Physical Society 068701-1
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In this algorithm, g determines the proportion of nodes
that are grown onto the network. The difference between
nodes grown on and those created initially is that the
former are connected to the network immediately upon
being added and with a guaranteed connectivity of k=2.
Because nodes created initially do not necessarily receive
connections, some of the initial nodes remain discon-
nected. To attain the desired number of nodes, we
carry out steps (ii) and (iii) of the algorithm with extra
nodes and then eliminate the necessary number of
nodes after construction is completed, choosing discon-
nected nodes first, followed by randomly selected nodes
if necessary.

The parameter p governs how nodes are selected for
connection once they have already been added. The
greater p is, the more a node’s chances of being picked
for further connections increases with its connectiv-
ity. When p � 0 all nodes have an equal chance, and
selection is random, while when p � 1 a connected
node’s chances reduce to

Q
�i�, and selection is maximally

preferential.
To explore the �p; g� parameter space, we constructed

networks with different parameter values and subjected
them to failure and attack. The rate of change of the
diameter for random failure is shown in Fig. 1 for simu-
lations with N � 2000, k � 4. These results suggest that
the scale-free network is far from optimal within this
family of networks, and the �1; 0� network is much better
from this perspective. The sensitivity to attack can be
seen in Fig. 2 which shows the diameter after removing
2.5% and 5.0% of the highest connected nodes. The high
sensitivity of the scale-free networks suggests a substan-
tial disadvantage when robustness to attack is desirable.
Interestingly the �1; 0� network has an advantage in this
context as well, with a sensitivity to attack not much
more than that of a random network despite starting
with a significantly lower initial diameter. Results for
values of N ranging from 1000 to 10 000 were similar.
The primary effect of increasing k is to reduce the differ-
ences between connectivities of all networks.
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FIG. 1. Comparison of the change in diameter due to random
failure for networks as a function of �p; g�.
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Analytic estimates for network diameters can be ob-
tained using the approximate result [3] d � �log�N=z1�=
log�z2=z1�� 	 1 which treats the network as a tree and
therefore is only roughly valid. Here z1 � hki and z2 �
hk2i � hki are the mean number of first and second neigh-
bors of a node. The first is the same for all studied net-
works. For the second, each of the network types can be
treated using exact or approximate analytic calculations
that can be compared with the simulations. For the ex-
ponential network the Poisson distribution for P�k� gives
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FIG. 2. Diameter as a function of �p; g�: (a) original net-
works; (b),(c) after removal of 2.5% and 5% of the most highly
connected nodes (attack), respectively.
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FIG. 3. Connectivity distributions of an exponential, �1; 0�,
and scale-free network.
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z2 � hki2 � 16 �15:7�, where the simulation results are
shown in parenthesis. For the scale-free network, using
a power-law distribution for P�k� with low and high k
cutoffs, gives z2 � hki2 log�Nhki

����
�

p
��N�=2��N 	 1=2��=

2� hki � 31:0 �45:0�. The poor accuracy is due to the
long tail of the power-law distribution. For the �0; 1�
network the second moment of P�k� can be readily calcu-
lated using arguments that generalize the treatment of the
Poisson distribution of the random network giving z2 �
�5=4�hki2 � hki=2 � 18 �17:9�. For the �1; 0� network a
recursive Master equation treatment of P�k� [13] gives
z2 � �8hki2 � 10hki 	 2�=3 � 30 �29�. These give ana-
lytic (simulation) results for the diameter of the exponen-
tial 5.48 (5.69), scale-free 4.04 (4.36), �0; 1� 5.13 (5.37),
and �1; 0� 4.08 (4.91) networks. The results are typi-
cally underestimated by 5%–20% due to neglect of net-
work topology. To estimate the effects of failure or attack
we replace N ! N � 1, hki ! hki�1� �2kr � 1�=N�, and
hk2i! hk2if1��kr�kr�1�=hk2i	2kr=hki�1�=Ng, where
kr is the connectivity of the removed node which is hki
for failure and for attack was estimated analytically as
the average of the highest k for N values from the dis-
tribution P�k� as kr�12:5�12:3�;159�120�;16�20�;39�39�
for the random, scale free, �0;1� and �1;0� networks,
respectively. This gives the change in diameter due to
the first node removal for attack and failure for the net-
works, respectively, of 0.013 (0.013) and 0.000 97
(0.0016), 0.92 (0.19) and 0.000 25 (0.0011), 0.017 (0.026)
and 0.000 75 (0.0014), 0.039 (0.033) and 0.000 27
(0.00061). Except for the scale-free network, the analytic
results are generally within 50% of the simulations with
the error due primarily to the neglect of network top-
ology. Inserting the previous simulation results into the
expression for the effect of node removal gives results
in better agreement with removal simulation results.
However, key comparisons, e.g., between the effects of
failure on the scale-free and �1;0� network are not cor-
rectly predicted by the analytic estimates indicating the
limitations of treatments that assume treelike topologies.

One possible goal of network design is to optimize
interconnectivity and robustness to failure and attack.
While the tradeoff between these various parameters is
not simple, still a general trend can be observed from the
figures. As one increases p, network interconnectivity
increases significantly. Increasing g and p together in-
creases sensitivity to attack, increasing either one sepa-
rately has much less effect. Robustness to failure
improves with p and declines with g. There is not, as
might be expected, an inherent tradeoff between robust-
ness to failure and to attack. One solution to our optim-
ization problem is then to set p to its maximum value and
g to its minimum, i.e., a �1; 0� network. The �1; 0� network
begins with a diameter closer to the scale-free network,
but demonstrates better robustness to failure and a robust-
ness to attack close to that of an exponential network.

Analysis of the connectivity distribution of the �1; 0�
network alongside those of the exponential and scale-free
068701-3
networks sheds light on its surprising capabilities (Fig. 3).
The peak and rapid falloff of the exponential network’s
distribution indicate that many nodes have connectivities
at or around the mean with relatively little variation. The
near linearity of the scale-free distribution shows, in
contrast, that the vast majority of nodes have low con-
nectivity, despite the presence of a few highly connected
nodes, whose numbers decay as a power law. The distri-
bution of the �1; 0� network lies between the exponential
and scale-free distributions; it bends downward like the
exponential distribution, but with much less curvature
and a broader tail. As compared to the scale-free distri-
bution, connectivity that would otherwise reside in the
lower and higher ranges of the distribution has been
redistributed to the middle.

A temporal bias caused by node addition, and absent in
the �1; 0� network, affects both the connectivity distribu-
tion and the topology of scale-free networks. As nodes
created earlier have more chances to be selected for con-
nection than those created later [14], the distribution
develops a broader tail, and its peak shifts to the left.
Moreover, connections made early on by the initial nodes
tend to be amplified over time due to positive feedback,
further skewing the distribution. In the early period of its
construction, a scale-free network will be highly inter-
connected, because the initial nodes can only connect to
each other. As more nodes are added, they selectively
connect to this inner hub and, to a lesser extent, to the
nodes surrounding it, forming layers around them. Two
nodes that are not connected to each other when they are
added cannot be connected later in the process even if
they both become highly connected. This process produ-
ces a treelike structure that is dependent on the earlier
nodes to hold it together.

The lack of temporal bias in the �1; 0� network leads to
more redundancy in the network. Since nodes are not
constrained to connect only with the subset of already
created nodes, more cycles form in the network. This is
especially true of the highly connected nodes, since they
068701-3



0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3

0.
4

0.5

f

S
 o

r 
<s

>
<s> exponential
<s> scale free
<s> (1,0)
S exponential
S scale free
S (1,0)

FIG. 4. Fragmentation analysis of the random, scale free, and
�1; 0� networks under attack showing the relative maximum
cluster size, S, and average cluster size of other clusters hsi.
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are the most likely to be paired up when edges are added.
The densely connected web thus formed ensures that even
if a highly connected node is taken out, little damage is
done to the diameter of the network, since there is always
a profusion of alternate paths.

In order to confirm the disparity in redundancy be-
tween the different network types, fragmentation analy-
sis [6] was performed by measuring the number and size
of isolated clusters in the networks as they were subjected
to attack. Figure 4 illustrates both the size of the maxi-
mum cluster, S, relative to the size of the network, and the
average size hsi of all clusters excluding the maximum
one. This experiment was carried out on exponential,
scale-free and �1; 0� networks, N � 2000 and k � 4,
with each network subject to removal of up to half its
nodes. For the �1; 0� network the rate of decrease of S and
the critical node fraction at which the maximum of hsi
occurs both lie between the corresponding values for the
random and scale-free networks. However, the maximum
of hsi for the �1; 0� network is significantly lower than that
of either the random or scale-free networks, indicating
that nodes become disconnected in smaller clusters, due
to improved network redundancy among the highly con-
nected nodes in the core.

The connectivity distribution of a somewhat different
parametrized set of networks, constructed using growth
and rewiring, has been investigated [15], but their robust-
ness to attack and failure was not studied. We constructed
networks of the type described in Ref. [15] and compared
them with �1; 0� networks of equivalent connectivity. We
found that, for comparable connectivity, the robustness of
the �1; 0� network is superior to that of this entire alter-
native class of networks.

We have presented a general framework for complex
networks based on two parameters, p and g, which regu-
late the growth and preferential attachment used in net-
work construction. Within this framework, exponential
and scale-free networks represent two corners of the
068701-4
parameter space. We find that the benefits of p, with
regard to interconnectivity and robustness to failure and
attack, outweigh its costs, while those of g do not.
Optimizing the values of the parameters according to
this logic allows us to create a novel network with an
aggregate of properties superior to those of the standard
networks. Such a network has potential for application in
engineering [16], social policy and management [17], and
other fields that attempt to design systems which de-
pend on interconnectivity but face exposure to failure
and attack. For problems such as these, exponential and
scale-free networks are suboptimal due to the one’s lim-
ited degree of interconnectivity and the other’s sensitivity
to attack. By combining an assessment of the relative
importance of interconnectivity and robustness to failure
and attack with measures of parameter sensitivity, one
should be able to construct a metric for optimal choice
among the class of �p; g� networks for any particular
application.
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