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We computed the phase-separation behavior and effective interactions of colloid-polymer mixtures in

the “protein limit,”

where the polymer radius of gyration is much larger than the colloid radius. For

ideal polymers, the critical colloidal packing fraction tends to zero, whereas for interacting polymers in
a good solvent the behavior is governed by a universal binodal, implying a constant critical colloid
packing fraction. In both systems the depletion interaction is not well described by effective pair
potentials but requires the incorporation of many-body contributions.
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Adding polymers to suspensions of micro- and nano-
particles induces depletion interactions that profoundly
affect their physical properties. This phenomenon has
important scientific and (bio)technological applications.
Polymers such as polyethylene glycol are routinely added
to protein solutions to enable protein crystallization [1,2],
a poorly understood process and of great importance in
structural biology [3]. In cell biology depletion interac-
tions are key in the process of macromolecular crowding
[4]. Food and paint production are among the industrial
sectors where depletion phenomena play a role.

In this Letter we focus on mixtures of hard sphere (HS)
colloids with a radius R. and nonadsorbing polymers
with a radius of gyration R,, in the regime where g =
R,/R. > 1. This is often called the nanoparticle or pro-
tein limit, because in practice small particles such as
proteins or micelles are needed to achieve large size-
ratios g (of course, HS’s are a very crude model for
proteins). Whereas the opposite “colloid limit” (g < 1)
has been well studied, the physics in the protein limit is
less established. This imbalance is partially due to the
lack of well-characterized experimental model systems
for the protein limit and partially to a poor theoretical
understanding. The colloid limit can be well described
within the framework of effective depletion pair poten-
tials [5,6], in contrast to the protein limit, where the
interactions cannot be reduced to a pairwise form [7,8].
Nevertheless, for biological and industrial applications,
this regime is at least as important as the colloid limit.

One of the first theoretical treatments of colloid-
polymer mixtures in the protein limit was by de Gennes
[9], who showed that the insertion free-energy F¢ M of a
single hard, nonadsorbing sphere into an athermal poly-
mer solution scales as

BFY ~ (R./€)¥\/" (1)

when R, <¢, vglth1 the polymer correlation length
§(¢ )~Rg¢pV/( v=1) R ¢p077 [10]. Here, B —
1/kBT is the reciprocal temperature v =059 is the
Flory exponent, and ¢, = p p%ﬂ'Rg, is the polymer vol-
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PACS numbers: 82.35.Np, 61.25.Hq, 82.70.Dd

ume fraction for a polymer number density p,, so that
¢, = 1 at the crossover from a dilute to a semidilute
solution [10]. The prefactors can be calculated by renor-
malization group (RG) theory [11], yielding BF
4.39¢ ,q7" 3, which has been verified by computer s1mu-
lations for large g [12]. Based on this description of F ¢ s
de Gennes [10] and Odijk [8] predicted extensive misci-
bility for colloid-polymer mixtures in the large g limit if
R. < &. However, it is well known that protein-polymer
mixtures do phase separate [13,14]. Recently, Odijk ef al
[15] suggested that a poor solvent could fac111tate phase
separation. Sear [16] altered the form of F to include
effects when R, > £, and also predicted phase separation
with a truncated virial theory. The same author recently
proposed an alternative theory [17] where the colloids
induce depletion attractions between the polymers, lead-
ing to a poorer effective solvent and eventually phase
separation. Mean-field cell model calculations also pre-
dict demixing [18]. Another promising approach uses
integral equation techniques [19] to predict spinodal
curves and critical points. However, all these theories
suffer from several uncontrolled approximations leading
to different predictions for the causes and properties of
the phase separation. To clarify this situation, we per-
formed computer simulations with as few simplifying
assumptions as possible, on which we report in this
Letter.

We have recently used a coarse-graining technique [20]
to study the colloid limit, and found quantitative agree-
ment with experimental fluid-fluid binodals [21], and
significant qualitative differences between interacting
(IP) and noninteracting (NIP) polymers. Here, we study
the same athermal model of HS colloids and nonadsorb-
ing polymers in the protein limit, and calculate, for the
first time, the full fluid-fluid binodals by direct simula-
tion. The results for the IP and NIP show even larger
qualitative differences, and many-body depletion inter-
actions must be invoked to understand the phase behavior.

The simulation model consists of polymers on a simple
cubic lattice mixed with HS colloids. The interacting
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polymers in a good solvent are modeled as self-avoiding
walks (SAW) of length L, which have a radius of gyration
R, ~ L”. The noninteracting polymers are modeled as
random walks, for which R, ~ L%3. In both models there
is an excluded-volume interaction between the colloidal
HS and the polymer segments. The simulations were
performed on a D3 lattice with periodic boundary con-
ditions, where D = 48 and D = 100 for the NIP and IP
system, respectively. Throughout this Letter, we use the
lattice spacing as the unit of length. For the NIP the
colloidal HS diameter was o. = 5.5 and the polymer
length was L = 50, 100, 200, and 500, corresponding to
g = 1.03, 1.45, 2.05, and 3.2, respectively. For the IP L =
2000, and o. = 10, 14, and 20, yielding ¢ = 3.86, 5.58,
and 7.78, respectively. Colloidal positions have continu-
ous values, but when we calculated the interaction be-
tween colloid and polymer the colloids were shifted such
that they occupied a constant number of lattice sites to
prevent spurious attractive positions for single colloids
(other lattice effects, although unavoidable, are expected
to be small). Thermodynamic state points were calculated
in the grand-canonical ensemble, i.e., at fixed volume V,
colloid chemical potential ., and polymer chemical
potential u, using Monte Carlo (MC) techniques. The
NIP were sampled using an (exact) lattice propagation
method [22,23], while the IP configurations were gener-
ated using translation, pivot moves, and configurational
bias MC [24] in an expanded ensemble to facilitate in-
sertion of long chains [25]. Typical simulation lengths
were 10° Monte Carlo moves per state point. In order to
determine the liquid-liquid binodals we first estimated
the coexistence line by scanning a series of . for several
values of u, and locate the . for which a sudden density
change occurred. Subsequently 8—10 (u,, ) coexis-
tence state points were simulated simultaneously using
parallel tempering [25]. When the estimated coexistence
points are sufficiently close to the true binodal and to
each other, and near the critical point, this scheme results
in proper ergodic sampling of both phases. If necessary,
the chemical potentials were adjusted towards coexis-
tence. We used the multiple histogram reweighting
[25,26] technique to determine the precise location of
the (u., up,) coexistence line, and the phase boundaries
in the (¢, ¢,) plane, where ¢, = p, % 7R3 is the colloid
volume fraction, with p, the colloid number density.
Figures 1 and 2 contrast the calculated phase diagrams
for NIP and IP for several size-ratios g. First, we note that
both models show extensive immiscibility, in agreement
with experiment [14]. Second, the two systems exhibit
striking differences: for the NIP, the critical colloid vol-
ume fraction ¢ tends to zero with increasing size-ratio
g, while the IP exhibit a nearly constant value of ¢, For
both systems the critical polymer concentration (;Sf,,m in-
creases with increasing g. The phase separation occurs
well into the semidilute regime for the IP, again in quali-
tative agreement with experiment [13]. Structural proper-

068304-2

® sim q=1.03
® sim g=1.45
* sim g=2.05 1
A sim q=3.20
) theory g=1.03
A —-—- theory 9=3.20

N

polymer volume fraction ¢,

o

0.1 0.2 0.3
colloid volume fraction ¢,

o

FIG. 1 (color online). Fluid-fluid binodals for a mixture of
noninteracting polymers and HS colloids with different size-
ratios ¢, in the (¢, ¢,) plane. The polymer volume fraction is
defined as ¢, = pp§7rRZ,, and can thus be higher than 1.
Crosses indicate the estimated critical point, obtained by ex-
trapolating the calculated phase boundaries. The full lines are a
guide to the eye. Dashed lines denote the simple theory de-
scribed in the text, with stars marking the critical points.

ties of semidilute polymer solutions are independent of
polymer length, being instead determined by the corre-
lation length &, which is a function of the monomer
density ¢ = Lp,. This suggests analyzing the phase
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FIG. 2. Fluid-fluid binodals for a mixture of interacting poly-
mers and HS colloids at different size-ratios ¢. Filled symbols
are direct simulation data. The open symbols are the colloid
limit (¢ = 1) results from Ref. [21]. Solid lines are a guide to
the eye. Inset: The same binodals plotted in a reduced polymer
density representation. The dotted curve corresponds to a
simple theory for the universal binodal when polymers are in
a good solvent while the dashed line is for polymers in a poorer
solvent. Crosses and stars as in Fig. 1.
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behavior of the polymer-HS mixture in terms of the ratio
R./& [16]. Indeed, when the phase lines in Fig. 2 are
rescaled with an accurate prescription for f(p,,) [12],
the binodals nearly collapse onto a “‘universal binodal,”
as shown in the inset of Fig. 2. This explains why the
critical colloid packing fraction is nearly constant in the
simulations. Similarly, ¢ scales as ¢St ~ g3~ D/7 =
g'3. For comparison, we have also 1nc1uded results for
g =< 1 from Ref. [21] in Fig. 2. These results do not exhibit
the same scaling behavior, since they are not in the semi-
dilute regime.

The differences between NIP and IP phase behavior
can be rationalized with some simple theories. Consider a
Helmholtz free-energy F of the form BF/V = f =
fHS + fp + fep- Here, the HS free-energy B8 is given
by the accurate Carnahan-Starling expression [27], and
the polymer free-energy f, for either IP or NIP solutions
is well understood [10]. The contribution due to the HS-
polymer interactions f., is nontrivial. A first approxima-
tion truncates after the second cross-virial coefficient,
yielding f., ~ chl For NIP the insertion free-energy
F(Cl) is exactly known [11], so that f., takes the form
flc(fa = pp(b [1 + (6Q/\/—) + 3q2] - pp¢ bcp’ which de-
fines the reduced cross-virial coefficient b ,. Since f
grows with increasing ¢, immiscibility sets in at lower
colloid packing fraction ¢ .. The theory can be improved
by realizing that the polymers exist only in the free
volume left by the colloids [28]. Simply taking this free
volume to be 1 — ¢, is an adequate first approximation
for the protein limit. The trends for the binodal lines
calculated from this simple theory, shown in Fig. 1, agree
qualitatively with the simulations. For example, the criti-
cal point shifts to smaller ¢, and larger ¢, for increasing
g, and the binodal lines cross at a low ¢.. For computa-
tional reasons the simulations only go up to ¢ = 3.2 and
we expect better quantitative agreement for larger ¢ since
¢t decreases so that the second-virial theory should
become more accurate. In the ¢ — oo limit, this theory
yields ¢&™ —1/b., ~1/(3¢%), and ¢ = ¢*/b., ~
g/3. Note that in the same limit, the penetrable sphere
or Asakura-Oosawa model [28] scales somewhat differ-
ently: ¢ — 1/4% and c]SCm — 1. Sear [7] already
pointed out the ¢St — 0 behav1or using a slightly differ-
ent prescription for the free volume than we employ here.

In the IP case, f ., is more difficult to estimate, even for
a second cross-virial theory. The R, < £ limit is given by
Eq. (1) with the prefactors from RG theory. For R, = f
we have previously shown that F¢ M s given by F\

F7RII + 677'R2 v, [12], where the polymer osmotic pres-
sure IT ~ £73 is well known [10]. However, since Eq. (1)
is essentially a surface (depletion layer) contribution, we
use a simple approximate second cross-virial term f., =
pLBIL(p)3 R} + 4.39¢ ,4~ "], which reduces to the
correct form in both the R < ¢ and the R, > £ limit.
(Obviously this approach, which resembles the more
schematic theory of Sear [16], could be improved.) As
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with our treatment of NIP, we take the effect of the
colloid excluded-volume into account by computing the
polymer densities in the free volume fraction 1 — ¢, (see
Ref. [29] for a complimentary approach). The theoretical
binodals were calculated using accurate expressions for &
and IT [12] and are compared with the simulation results
in Fig. 2, in the R,/ & versus ¢, plane. The qualitative
agreement suggests that we can also use this theory to
estimate the effect of a poorer solvent on the binodals.
Followmg Ref. [15], we alter the scaling of ¢ to & ~
$,°" so that II ~ &3 ~ p,¢5 " Interestingly, Fig. 2
shows that using & ~ 1.5 instead of the appropriate ex-
ponent for polymers in a good solvent (6 ~ 2.3), does
not result in important differences in the binodals. Of
course, the differences will appear larger in the (¢, ¢ )
plane due to the different scaling of £. One must keep in
mind, however, that these predictions follow from
a simple scaling theory and qualitatively different be-
havior may emerge when one approaches the # point
(where 6 = 1).

To illustrate the many-body nature of the depletion
interaction we estimated the phase behavior by approx-
imating the system by colloids interacting via pairwise
effective potentials. We computed the effective pair inter-
action v(r) between two colloids in a bath of IP’s, by
Buv(r) = —1Ing(r) for p, — 0. The colloid radial distri-
bution function g(r) was estimated by measuring the
insertion probability of a HS at a distance r from a second
fixed HS in a SAW polymer solution using the above MC
techniques. Results for a single size-ratio ¢ = 7.78 as a
function of ¢, are shown in Fig. 3. Several features are
similar to the colloid limit [30]: the range shortens and

v(t/R,)

@ 03

—— @=1.7 theory

- q=3.8 theory
- - - q=7.78 theory
0.5 . : :
0 0.1 0.2 0.3 0.4 0.5
r'R
9
FIG. 3. Effective colloid-colloid pair potentials induced by

interacting polymers for g = 7.78. Theoretical lines from
Ref. [30]. Inset: Reduced second osmotic virial coefficient B; =
B,/[(16/3)7R?] as a function polymer densities for several size
ratios.
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the well depth increases with increasing ¢ ,. Interestingly,
our simple depletion potential [30], derived for the
colloidal limit, also works semiquantitatively in this re-
gime. A good measure for the attractive strength of
effective pair potentials is given by the second osmotic
virial coefficient [27], shown in Fig. 3. The saturation of
B; for larger ¢ is an interesting qualitative feature: ap-
parently the shortening of the range compensates the
deepening of the attraction, so that the total cohesion
does not increase with increasing ¢,, something also
found in RG [11] and integral equation calculations
[19]. For pairwise interacting systems, phase separation
typically sets in when B; = —1.5 [31]. Here, the satura-
tion of B suggests that for large ¢ the pair interactions do
not provide enough cohesion to explain the phase separa-
tion. We arrive at the same conclusions with simple mean-
field theories [27], which should be relatively trustworthy
given the long range of the pair potentials. Obviously, for
g > 1 apair-level description is not sufficient, and many-
body interactions must be invoked.

For the NIP, one might also expect many-body inter-
actions to be important for large g. A good approximation
to the pair potentials exists [23,30], from which the
second-virial coefficients at the calculated critical points
follow: Bj(g = 1.03) = —13.1; B3(q = 1.45) = —16.4;
B3(q = 2.05) = —22.7. Even though the actual critical
¢.’s are very low, so that a second-virial description
might be thought to be sufficient, the analysis above
shows that for NIP the pair interactions provide too
much cohesion, opposite to the IP case. Clearly, many-
body interactions must also be invoked to describe the
phase behavior correctly, as suggested by other authors
[7,8,19,23,32].

In conclusion, we have shown by computer simulations
that a mixture of polymers and nonadsorbing HS colloids
shows extensive immiscibility in the protein limit, where
the polymer-colloid size-ratio g >> 1. For IP the phase
behavior is dictated by a universal binodal in the semi-
dilute regime. For NIP, the colloid packing fraction tends
to zero for increasing polymer length. In contrast to the
better studied colloid limit, pair interactions are not
sufficient to rationalize the phase behavior. We hope that
future experiments on HS colloids with nonadsorbing
polymer will test these predictions. Future work might
include extensions to nonspherical particles, poor sol-
vents, and adsorbing systems.
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