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We develop a unified model that describes both ‘‘micro’’ and ‘‘macro’’ evolutions within a single
theoretical framework. The ecosystem is described as a dynamic network; the population dynamics at
each node of this network describes the ‘‘microevolution’’ over ecological time scales (i.e., birth, ageing,
and natural death of individual organisms), while the appearance of new nodes, the slow changes of the
links, and the disappearance of existing nodes accounts for the ‘‘macroevolution’’ over geological time
scales (i.e., the origination, evolution, and extinction of species). In contrast to several earlier claims in
the literature, we observe strong deviations from power law in the regime of long lifetimes.
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for instance, i at any arbitrary instant of time t is given by
ni�t�. The limited availability of resources, other than

j�1

where the superscript � on Jij indicates that the sum is
The recent surge in the modeling of biological evolu-
tion and extinction of species, using the concepts and
techniques of statistical physics, has been stimulated
partly by the claims (see [1–4] for reviews) that the
statistical distributions of several quantities associated
with the extinction of species follow power laws. How-
ever, almost all of these models focus only on the macro-
evolution (i.e., the evolution of species on geological time
scales). Neither the birth, ageing, and, eventually, the
death of the individual organisms nor the detailed popu-
lation dynamics make explicit appearance in these theo-
retical descriptions. In reality, of course, it is the death of
individual organisms that causes an entire population to
be wiped out.

Therefore, we develop a unified model of an ecosystem
that describes both micro- and macroevolutions. The
ecosystem is described as a dynamic network. The micro-
evolution over ecological time scales, i.e., birth, growth
(ageing), and natural death of individual organisms, is
described by the dynamics within each node [5]. The
network itself evolves slowly with time; over sufficiently
long time scales, populations of some species would drop
to zero, indicating their extinction, and the corresponding
nodes would be deleted from the network. On the other
hand, appearance of new nodes, together with their own
population of individual organisms, signals origination of
new species. In addition, the links of the network also
change slowly to capture the adaptive evolution of the
species by random mutations over geological time scales.

The dynamic network.— At any arbitrary instant of
time t, the model consists of N�t� species each of which
may be represented by one of the N nodes of a dynamic
network; the total number of nodes is not allowed to
exceed Nmax. Our model allows N�t� to fluctuate with
time over the range 1 � N�t� � Nmax. The population
(i.e., the total number of organisms) of a given species,
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food, in the ecosystem imposes an upper limit nmax of
the allowed population of each species. Thus, the total
number of organisms n�t� at time t is given by n�t� �PN�t�

i�1 ni�t�. Both Nmax and nmax are time independent in
the model.

The interactions.—Prey-predator interactions are cap-
tured through the matrix J. The influence of species j on
species i is given by Jij; in general, Jij � Jji. The only
restriction we impose initially on the elements of J is that
Jii � 0; i.e., none of the organisms preys on any other
member of the same species. Since in all practical situ-
ations food webs specify only the sign of Jij, we allow the
off-diagonal elements of Jij to take only the values �1
and �1. Thus, Jij � 1 � �Jji indicates that j is the prey
and i is the predator. Similarly, the situations Jij � �1 �
Jji and Jij � 1 � Jji correspond, respectively, to compe-
tition and cooperation between the species i and j. We
assign the values �1 or �1 to the off-diagonal elements
of J randomly with equal probability in the initial state of
the ecosystem [6]. However, our model can be easily
generalized to take into account any other architecture
of food webs [7,8].

We now argue that the matrix J accounts not only for
the interspecies interactions but also intraspecies inter-
actions. First of all, note that, if Jij > 0, then the species j
is a prey of the species i if, simultaneously, Jji < 0,
whereas the species j cooperates with i if, simultaneously,
Jij > 0 and Jji > 0. Therefore, if Jij > 0, the quantity
�Jij � Jji�=2 is unity if the species j is a prey of the
species i, but it vanishes if the species i and j mutually
cooperate. Similarly, if Jij < 0, the quantity ��Jij � Jji�=
2 is unity if the species j is a predator of i, but it vanishes
if the species i and j compete against each other. Now,
consider the two sums

S�
i � �

XN �J�ij � Jji�

2
nj; (1)
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restricted to only the positive (negative) elements Jij. The
sum S�

i is a measure of the total food currently available
to the ith species, whereas �S�

i is a measure of the total
population of the ith species that would be, at the same
time, consumed as food by its predators. If the food
available is less than the requirement, then some organ-
isms of the species i will die of starvation, even if none of
them are killed by any predator. This way the matrix J
can account for the shortfall in the food supply and
the consequent competition among the organisms of the
species i.

The collective characteristics of species.—The age of
an arbitrary individual organism, for example, � of the
species i at time t, is denoted by the symbol X�i; �; t�. In
our model each species i is collectively characterized by
[6,9]: (i) The minimum reproduction age Xrep�i�, (ii) the
birth rate M�i�, (iii) the maximum possible age Xmax�i�,
and (iv) the elements Jij and Jji �j � 1; 2; :::; N�. An
individual of the ith species can reproduce only after
attaining the age Xrep�i�. Whenever an organism of ith
species gives birth to offsprings, M�i� of these are born
simultaneously. None of the individuals of the ith species
can live longer than Xmax�i�. Thus, even if an individual
manages to escape its predators, it cannot live longer than
Xmax�i� because of ‘‘natural death’’ caused by ageing.

The dynamics of the ecosystem.—The state of the
system is updated in discrete time steps as follows.

Step I—birth: Assuming, for the sake of simplicity,
the reproductions to be asexual, each individual organism
� [� � 1; :::; ni�t�] of the species i [i � 1; 2; :::N�t�] is
allowed to give birth to M�i; t� offsprings at every time
step t with probability (per unit time) pb�i; �; t�, which
is nonzero only when the individual organism age
X�i; �; t� > Xrep�i; t�.

Step II—natural death: At any arbitrary time step t,
the probability (per unit time) of ‘‘natural’’ death (due to
ageing) of an individual organism � of species i is
pd�i; �; t�.

Step III—mutation: With probability pmut per unit
time, all the species simultaneously readjust one of the
incoming interactions Jij by assigning it a new value of
either �1 or �1 with equal probability [6].

Step IV—starvation death and killing by prey: If ni �
S� is larger than S�, then food shortage will be the
dominant cause of premature death of a fraction of the
existing population of the species i. On the other hand, if
S� > ni � S�, then a fraction of the existing population
will be wiped out primarily by the predators. In order to
capture these phenomena, at every time step t, in addition
to the natural death due to ageing, a further reduction of
the population by

Cmax�S�; ni � S�� (2)

is implemented where ni�t� is the population of the species
i that survives after the natural death step above. C is a
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constant of proportionality that basically sets the time
scale of the population dynamics. If implementation of
these steps makes ni � 0, species i becomes extinct.

Step V—speciation: At each time step, the niches
(nodes) left empty by extinction of species are refilled
by new species, with probability psp. All the simulta-
neously refilled nodes of the network originate from one
common ancestor which is picked up randomly from
among the surviving species. All the interactions Jij
and Jji of the new species are identical to those of their
common ancestor; each new species, however, either
competes or cooperates with its ancestor species. The
characteristic parameters Xmax, Xrep, Mj of each of the
new species differ randomly by �1 from the correspond-
ing parameters for their ancestor.

Probability of birth: We chose the time-dependent
probability of birth per unit time as

pb�i; �� �
�
Xmax�i� � X�i; ��
Xmax�i� � Xrep�i�

��
1�

ni
nmax

�

iff X�i; �� � Xrep�i� and Xmax�i� > Xrep�i�:
(3)

Note that in the limit of vanishingly small population,
i.e., ni ! 0, we have pb�i; �� ! 1 if X�i; �� � Xrep�i� and,
then, pb decreases linearly [10] as the organism grows
older. However, since the ecosystem can support only a
maximum of nmax individual organisms of each species,
pb�i; �; t� ! 0 as ni�t� ! nmax, irrespective of the age of
the individual organism � [11].

Probability of natural death: We assume the probability
of natural death (due to ageing) to have the form [12]

pd�i; �� �
�
X�i; ��M�i� � Xrep�i�

Xmax�i�M�i� � Xrep�i�

�
if X�i; �� � Xrep�i�;

(4)

pd�i; �� �
�
Xrep�i�M�i� � Xrep�i�

Xmax�i�M�i� � Xrep�i�

�
if X�i; ��<Xrep�i�;

(5)

provided Xmax�i�M�i� > Xrep�i�. In all other situations,
pd�i; �� � 1. Note that, for a given Xmax and Xrep, the
larger is the M the higher is the pd for any age X.
Therefore, each species has a tendency to increase M
for giving birth to a larger number of offsprings, whereas
the higher mortality for higher M opposes this tendency.

The longest runs in our computer simulations were
continued up to a maximum of 5
 106 time steps. If
each time step in our model is assumed to correspond to a
real time of the order of 1 yr, then the time scale of 5

106 yr, over which we have monitored our model ecosys-
tem, is comparable to real geological time scales.

Since we faced difficulty in getting high quality data,
with reasonably good statistics, for Nmax > 100 and
nmax > 1000, we have carried out most of our simulations
with Nmax � 50, 100, and nmax � 100, 1000, only. The
068101-2
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FIG. 1. The total number of species N�t� is plotted against
time; the corresponding parameter set is Nmax � 100, nmax �
1000, C � 0:1, psp � 0:001, pmut � 0:001.
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data obtained from the different runs, each starting from
a random initial condition, were averaged. Both CRAY-
T3E and SUN workstations were used for the simulations.

In Fig. 1, we plot the total number of species, N�t�, in a
particular run, starting from a single initial condition, up
to half a million time steps. In Fig. 2, we plot the corre-
sponding variation of the total population n�t� over rela-
tively short interval of 20 000 time steps only. These
clearly demonstrate that the evolution has periods of
‘‘stasis’’ during which organisms populations keep fluc-
tuating; the stases are interrupted by occasional bursts of
rapid extinctions followed by slower recovery.

The average distributions of the lifetimes of the species
are plotted in Fig. 3 for one set of values of the parame-
ters. Clearly, the data are consistent with a power law; the
effective exponent, which is, approximately, 2, is also
consistent with the corresponding estimate quoted in
the literature [1,2]. However, in Fig. 3, the power law
holds only over a limited range [13]. Since real ecosys-
tems are much more complex than our model ecosystem
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FIG. 2. The total number of organisms n�t� is plotted against
time over a relatively short part of the evolution of the
ecosystem. The parameter values are identical to those in Fig. 1.
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and the available fossil data are quite sparse, it is ques-
tionable whether real extinctions follow power laws and,
if so, over how many orders of magnitude.

We have also observed (not shown) that the higher is
the mutation probability pmut the lower is the lifetime.
But, psp had a weaker effect on the same data. However, if
psp is too small to maintain adequate pace of recovery of
the ecosystem after mass extinctions, the entire ecosys-
tem collapses.

Figure 4 shows the time-averaged age distribution in
the populations of a species as well as the distributions of
Xmax, Xrep, and M. We see that the minimum age of
reproduction Xrep is quite small, as usual in the employed
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FIG. 3. Log-log plots of the distributions of the lifetimes of
the species in an ecosystem with (a) nmax � 100, (b) nmax �
1000. In (b), the data beyond the lifetime of 10 are not shown to
emphasize the initial power law regime (symbolized by the
straight line with slope �2. The other common parameters for
both the figures are Nmax � 50, psp � 0:01, pmut � 0:001. The
symbols �, +, 
, and * in (a) correspond to maximum
simulation times 5
 103, 5
 104, 5
 105, and 5
 106, re-
spectively, while the symbols +, 
, and * in (b) correspond to
the maximum simulation times 104, 5
 104, and 4
 105,
respectively. Each of the data points has been obtained by
averaging over 18 to 176 runs, each starting from a new random
initial state.
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FIG. 4. Semilog plot of the distributions of X (+), Xmax (
),
and Xrep (*); the parameter values are the same as those in
Fig. 1.
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ageing model [9]. The age distribution decays stronger
than a simple exponential, indicating a mortality increas-
ing with age as it should be [12]. The genetic death ages
Xmax ’ 72 are far above the upper end ’ 31 of the age
distribution, as is appropriate for animals in the wild [10].
Finally, Fig. 5 shows the distribution of M�i�; this is
relatively much broader than the distributions of Xmax

and Xrep.
Not only the total number of species and the interspe-

cies interactions but also the collective characteristics,
namely, Xrep, Xmax, and M, of each species vary following
a stochastic dynamics. Thus, our model is capable of self-
organization. The population dynamics within the frame-
work of Lotka-Volterra equations have been considered
earlier [14] for only a few species. But, these do not
account for the age distributions as the entire population
of each species is represented collectively by a single
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FIG. 5. The distribution of M; the parameter values are the
same as those in Fig. 1.
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dynamical variable in contrast to the explicit birth,
growth, and death of individual organisms captured in
our model.

Since we have observed strong deviations from power
law in the distributions of lifetimes of species even in the
Sole-Manrubia model [15], in spite of the absence of
detailed ‘‘microdynamics’’ in the latter, we strongly be-
lieve that this is a generic feature of evolution and ex-
tinction of species. It would be interesting to investigate
the geographical effects on our model ecosystem by
reformulating it on a lattice [16].
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