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Experimental Implementation of an Adiabatic Quantum Optimization Algorithm
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We report the realization of a nuclear magnetic resonance computer with three quantum bits that
simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new
insight into how quantum resources can be used to solve hard problems. This experiment uses a
particularly well-suited three quantum bit molecule and was made possible by introducing a technique
that encodes general instances of the given optimization problem into an easily applicable Hamiltonian.
Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction
of a simple decoherence model.
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are not easily accessible. We developed methods to imple- ward process and changes the run time T of the adiabatic
Since the discovery of the algorithms of Shor [1] and
Grover [2], the quest of finding new quantum algorithms
proved a formidable challenge. Recently, however, a
novel algorithm was proposed, using adiabatic evolution
[3,4]. Despite the uncertainty in its scaling behavior, this
algorithm remains a remarkable discovery because it
offers new insights into the potential usefulness of quan-
tum resources for computational tasks.

Experimental realizations of quantum algorithms in
the past demonstrated Grover’s search algorithm, the
Deutsch-Jozsa algorithm, order finding, and Shor’s algo-
rithm [5,6]. Recently, Hogg’s algorithm was implemented
using only one computational step [7]; however, a dem-
onstration of an adiabatic quantum algorithm thus far has
remained beyond reach.

Here, we provide the first experimental implementation
of an adiabatic quantum optimization algorithm using
three qubits and nuclear magnetic resonance (NMR)
techniques [8]. NMR techniques are especially attractive
because several tens of qubits may be accessible, which is
precisely the range that could be crucial in determining
the scaling behavior of adiabatic quantum algorithms [9].
Compared to earlier implementations of search problems
[5,10], this experiment is a full implementation of a true
optimization problem which does not require a black box
function or ancilla bits.

This experiment was made possible by overcoming two
experimental challenges. First, an adiabatic evolu-
tion requires a smoothly varying Hamiltonian over
time, but the terms of the available Hamiltonian in our
system cannot be smoothly varied and may even have
fixed values. We developed a method to approximately
smoothly vary a Hamiltonian despite the given restric-
tions by extending NMR average Hamiltonian techniques
[11]. Second, general instances of the optimization algo-
rithm may require the application of Hamiltonians that
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ment general instances of a well-known classical NP-
complete (nondeterministic, polynomial time) optimiza-
tion problem given a fixed natural system Hamiltonian.

We provide a concrete procedure detailing these meth-
ods. We then apply the results to the Maximum Cut
(MAXCUT) [12] optimization problem. Our experiments
indicate there exists an optimal total running time which
can be predicted using a decoherence model based on
independent stochastic relaxation of the spins.

An adiabatic quantum algorithm evolves the quantum
state with a slowly varying, time-dependent Hamiltonian.
Suppose we are given some time-dependent Hamiltonian
H�t�, where 0 � t � T, and at t � 0 we start in the ground
state of H�0�. By varying H�t� slowly, the quantum sys-
tem remains in the ground state of H�t� for all 0 � t � T
provided the lowest two energy eigenvalues of H�t� are
never degenerate [13]. Now suppose we can encode an
optimization problem into H�T�. Then the state of the
quantum system at time t � T represents the solution
to the optimization problem [3]. The total run time T of
the adiabatic algorithm scales as g�2

min, where gmin is
the minimum separation between the lowest two energy
eigenvalues of H�t� [3,14]. The scaling behavior of gmin

will ultimately determine the success of adiabatic quan-
tum algorithms. Classical simulations of this scaling
behavior are hard due to the exponentially growing size
of Hilbert space. In contrast, sufficiently large quantum
computers could simulate this behavior efficiently.

Smoothly varying some time-dependent Hamiltonian
appears straightforward but contrasts with the traditional
picture of discrete unitary operations including fault tol-
erant quantum circuit constructions [15]. Fortunately, we
can approximate a smoothly varying Hamiltonian using
methods of quantum simulations [16] and recast adiabatic
evolution in terms of unitary operations.

Discretizing a continuous Hamiltonian is a straightfor-
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FIG. 1. (a) Illustration of Eq. (2). The shaded and clear boxes
denote the strength and duration of the Hamiltonians Hb and
Hp, respectively. (b) Illustration of a graph consisting of three
nodes and three edges. The edges carry weights w12, w13, and
w23. When min�wij� � w23 as indicated by the length of the
edges, the MAXCUT corresponds to the drawn cut. The solu-
tion is therefore s � 100 and also s � 011 due to symmetry.
This symmetry can be broken by assigning the weights w1, w2,
and w3 to the nodes.
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algorithm only polynomially [14]. For simplicity, let the
discrete time Hamiltonian H�m� be a linear interpolation
from some beginning Hamiltonian H�0� � Hb to some
final problem Hamiltonian H�M� � Hp such that
H�M� � �m=M�Hp � �1�m=M�Hb. The unitary evolu-
tion of the discrete algorithm can be written as

U �
Y

m

Um �
Y

m

e�i��1�m=M�Hb��m=M�Hp��t; (1)

where �t � T=�M� 1�, andM� 1 is the total number of
discretization steps. The adiabatic limit is achieved when
both T;M ! 1 and �t! 0.

Full control over the strength ofHb andHp is needed to
implement Eq. (1). However, this may not necessarily be a
realistic experimental assumption.We will next show how
the discrete time adiabatic algorithm can still be imple-
mented when Hb and Hp cannot both be applied simul-
taneously and when they are both fixed in strength.

When both Hb and Hp are fixed, we can approximate
Um to second order by using the Trotter formula
exp��A� B��t� � exp�A�t=2� exp�B�t� exp�A�t=2� �
O��t2� [16]. Higher order approximations can be con-
structed if more accuracy is required.

Now suppose Hb and Hp are both constant. Since any
unitary matrix is generated by an action �iH�t, we can
increase the effect of a constant Hamiltonian H by
lengthening the time �t. Thus, we can implicitly increase
the strength ofHb andHp even when they are constant by
simply increasing the time during which they are applied.

This technique also allows cases when the accessible
Hamiltonians are not of the required strength, for ex-
ample, when we are given H0

b � gHb and H0
p � hHp but

still wish to implement Hb and Hp. Using all of the
described techniques, we can now write Um as

Um � e�iH
0
b��1�m=M��t=2g� 
 e�iH

0
p��m=M��t=h�; (2)

where A 
 B � ABA. Each discretization step is of length
�1�m=M��t=g� �m=M��t=h, which is not constant
when g � h. As an illustration consider Fig. 1(a).

We choose �t � T=�M� 1� to be constant as we vary
the number of discretization steps M� 1. This way, the
total run time T increases withM� 1, allowing us to test
the behavior of the algorithm when approaching one of
the conditions for the adiabatic limit. Even when the
discrete approximation is not close to the adiabatic limit,
the implemented algorithm can often find solutions using
relatively few steps but lacks the guaranteed performance
of the adiabatic theorem [17].

Adiabatic evolution has been proposed to solve general
optimization problems, including NP-complete ones. In
this general setting, the algorithm can depend on the
existence of a black box function or the usage of large
amounts of workspace. Our goal here is to optimize a
hard natural problem in a way that avoids these difficul-
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ties. We will first describe which problem we chose and
later explain why it does not require ancilla qubits.

We found the MAXCUT problem to be a well-suited
problem to demonstrate an adiabatic quantum algorithm
because it allows a variety of interesting test cases. It also
appears in the study of spin glasses [18], among others.
The decision variant of the MAXCUT problem is part of
the core NP-complete problems [12], and even the ap-
proximation within a factor of 1.0624 of the perfect
solution is NP complete [19].

The MAXCUT problem can be understood as follows.
A cut is defined as the partitioning of an undirected
n-node graph with edge weights into two sets. We define
the payoff as the sum of weights of edges crossing the cut.
The maximum cut is a cut that maximizes this payoff. By
assigning either si � 0 or si � 1 to each node i, depend-
ing on its location with respect to the cut, the MAXCUT
problem can be restated as finding the n-bit number s that
maximizes the payoff. An extension of the MAXCUT
problem is to let the nodes themselves carry weights,
which can be regarded as the nodes having a preference
on their location. As an illustration consider a graph with
three nodes as drawn in Fig. 1(b).

The payoff as a function of the cut defined by s is

P�s� �
X

i

wisi �
X

i;j

si�1� sj�wij; (3)

where wij are the edge weights, wi denotes the node
weights, and si is the value of the ith bit of s.

The smallest meaningful test case of the MAXCUT
problem requires three nodes and admits a variety of
interesting cases by varying wi and wij. We aimed at
two goals when choosing a representative set of weights.
First, we wanted the minimum energy gap gmin to be
smaller than the one for a three-qubit adiabatic Grover
search. Second, we wanted a resulting energy landscape
with both a global and local maximum such that a greedy
classical search would incorrectly find the local maxi-
mum half the time [20]. These goals are met by the choice
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FIG. 2. Refocusing scheme to effectively change Jij into wij.
The horizontal lines denote qubits 1, 2, and 3 and time goes
from left to right. The black rectangles represent 180
 rotations.
The delay segments are of length �,  , !, and ". When all
segments are of equal length, all couplings are effectively
turned off [22] because �xie�i�zi�zjt�xi � ei�zi�zjt. In our ex-
periment, � � 0:42 ms,  � 0 ms, ! � 4 ms, and " � 2:9 ms
in the last slice M� 1. The rf pulses that implement Hb0

perform 33:75
 rotations on the qubits in the first slice.

FIG. 3. Plot of the absolute value of the deviation density
matrix for M � 100 (T � 374 ms), M � 30 (T � 115 ms), and
M � 15 (T � 59:2 ms), adjusted by an identity portion such
that the minimum diagonal value equals zero. The scale is
arbitrary but the same for each plot.

P H Y S I C A L R E V I E W L E T T E R S week ending
14 FEBRUARY 2003VOLUME 90, NUMBER 6
w1 � w2 � w3 � 2, w12 � 2, w13 � 1, and w23 � 3.
The payoff function for this set of weights is P�s� �
�0 6 7 7 5 9 8 6�, where s � �000 001 010 011 100 101
110 111�. The global maximum lies at s � 101 so the
answer on the quantum computer following measurement
should be j101i, and not at the local maximum s � 110

In the quantum setting, this payoff function P�s� can be
encoded into the Hamiltonian Hp by rewriting Eq. (3)
using Pauli matrices:

Hp �
X

i

wi�I � �zi�=2�
X

i<j

wij�I � �zi�zj�=2; (4)

where I is the 2n � 2n identity matrix and �zi is the Pauli
Z matrix on spin i. The identity matrices in the equation
above only lead to an overall phase which cannot be
observed and, hence, they can be ignored. The diagonal
values of Eq. (4) are equal to P�s�. Because of the direct
encoding of P�s� intoHp, no black box function or ancilla
qubits are required, which makes this a full implementa-
tion of an optimization problem.

Similar to Eq. (4), the natural Hamiltonian of n
weakly coupled spin-1=2 nuclei subject to a static mag-
netic field B0 is well approximated by [21]

H � �
X

i

!i�zi=2�
X

i<j

�Jij�zi�zj=2�H env; (5)

where the first term represents the Larmor precession of
each spin i about �B0, and !i is its Larmor frequency.
The second term describes the scalar spin-spin coupling
of strength Jij between spins i and j. The last term
represents coupling to the environment, causing decoher-
ence. Note the resemblances between H and Hp.

Despite the similarities, the spin-spin couplings of
Eq. (5) are generally different from a randomly chosen
set of weights. Therefore, we require a procedure to turn
the fixed Jij into any specified weights wij. This is
achieved using refocusing schemes that are typically
used to turn on only one of the couplings while turning
all others off [21].

We have modified a refocusing scheme to effectively
change the couplings to any arbitrary value. Consider the
pulse sequence drawn in Fig. 2. Based on this scheme, we
can derive the underconstrained system ���  � !�
"�J12 � w12, ���  � !� "�J13 � w13, and ���  �
!� "�J23 � w23, which can be solved for positive �,  ,
!, and " such that Jij ! wij.

The single weights wi are implemented by introducing
a reference frame for each spin i which rotates about �B0

at frequency �wi � wi�=2. In order to apply the single
qubit rotations of our refocusing scheme on resonance,
we apply the reference frequency shift only during the
delay segment �, which we can always choose to be a
positive value. Thus, Hp is implemented by applying the
refocusing scheme from Fig. 2 while going off resonance
during the delay segment �.
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A full implementation of an adiabatic algorithm also
requires a proper choice of Hb. We choose Hb �

P
i �xi

for several reasons. First, its highest two excited states are
nondegenerate. Second, it can be easily generated using
single qubit rotations. Third, its highest excited state is
created from a pure state with all qubits in the j0i state by
applying a Hadamard gate on all qubits (we require the
initial state to be the highest excited state of Hb because
we are optimizing for the maximum value of Hp).

The full adiabatic quantum algorithm is now imple-
mented by first creating the highest excited state of Hb.
We then applyM� 1 unitary matrices as given by Eq. (2)
and illustrated by Fig. 1(a). Accordingly, from slice to
slice, we decrease the time during which Hb is active
while increasing the time during which Hp is active.
Finally, we measure the quantum system and read out
the answer.

We selected 13C-labeled CHFBr2 for our experiments
[10]. The Hamiltonian of the 1H-19F-13C system is of the
form of Eq. (5) with measured couplings JHC � 224 Hz,
JHF � 50 Hz, and JFC � �311 Hz. Experiments were
carried out at MIT using an 11.7 Tesla Oxford
Instruments magnet and a Varian Unity Inova spectrome-
ter with a triple resonance (H-F-X) probe from Nalorac.

The experiments were performed at room temperature
at which the thermal equilibrium state is highly mixed
and cannot be turned into the required initial state by just
unitary transforms. We thus first created an approximate
effective pure state as in Ref. [10] by summing over three
temporal labeling experiments.
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FIG. 4. Experimental performance of the adiabatic algo-
rithm. (a) Plot of the error as a function of M. The error
measure is the trace distance D�&;�� � j&� �j=2, where �
is the traceless deviation density matrix for M � 400, approxi-
mating M ! 1, and & equals the ideal expected (�), the
experimentally obtained (�), or the ideal expected traceless
deviation density matrix with decoherence effects (�) [6]. The
minimum error occurs at about M � 60 indicating an optimal
run time of the algorithm. (b) A similar observation can be
made when plotting j101ih101j as a function of M.
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In our experiments, we actually implemented 0:5Hp
and 0:5887Hb instead ofHp andHb. This ensures that the
error due to the second order Trotter approximation is
sufficiently small. We also choose g so the applied rf field
does not heat the sample, and g� h so Jij can be ignored
when applying Hb. All of these choices result in a total
experimental time that is within the shortest T2 decoher-
ence time [10]. We reconstructed the traceless deviation
density matrices upon completion of the experiments
using quantum state tomography [10].

We executed this algorithm for several M [with wi and
wij as listed above Eq. (4)]. Since we chose �t to be
constant, this meant increasing the run time T of the
algorithm. The reconstructed deviation density matrices
are shown in Fig. 3. The plots clearly display the expected
pure state j101i. The local maximum at s � 110 has a
decreasingly small probability of being measured for
increasing M. Simulations using Eq. (2) show that this
optimization algorithm performs better for increasing
M. We wanted to verify whether this is indeed true
experimentally.

For this purpose, we estimate the error of our obtained
deviation density matrices compared with the ideal case
of M � 1. Figure 4(a) plots the trace distance as a
function of M, using the same arbitrary scale as in
Fig. 3. From the plot, we observe there exists an optimal
run time of the algorithm, corresponding to 0.226 s in our
experiment. This optimal run time is in good agreement
with the prediction of a previously developed simple
decoherence model [6]. Predicting the impact of decoher-
ence has already provided invaluable insight into estimat-
ing errors in previous experiments [6], and we believe
continued effort towards understanding decoherence will
greatly benefit experimental investigations of quantum
systems.

In conclusion, we have provided the first experimental
demonstration of an adiabatic quantum optimization al-
gorithm. We show a concrete procedure turning a continu-
ous time adiabatic quantum algorithm into a discrete time
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version, even when certain restrictions apply to the ac-
cessible Hamiltonians. Our results indicate that there
exists an optimal run time of the algorithm which can
be roughly predicted using a simple decoherence model.
We believe this implementation opens the door to a vari-
ety of interesting experimental demonstrations and inves-
tigations of adiabatic quantum algorithms.
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