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Encoding and manipulation of quantum information by means of topological degrees of freedom
provides a promising way to achieve natural fault tolerance that is built in at the physical level. We show
that this topological approach to quantum information processing is a particular instance of the notion
of computation in a noiseless quantum subsystem. The latter then provides the most general conceptual
framework for stabilizing quantum information and for preserving quantum coherence in topological

and geometric systems.
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Quantum information is sensitive: more bad things can
happen to a quantum bit than to a classical bit [1]. A
variety of schemes for protecting quantum information
have been developed, including quantum error correction
codes [2], decoherence-free subspaces [3], noiseless
subsystems [4], bang-bang decoupling [5], and topologi-
cal quantum computation [6]. The first four of these
techniques are closely related to each other and can be
described in a simple unified framework based on repre-
sentations of the algebra of errors [4,7]. This paper shows
that topological quantum computation also falls into the
error-algebra framework. This result suggests that meth-
ods for preserving quantum coherence in general fall
within a unified algebraic framework.

In the error-algebra framework quantum information
is protected by using symmetry. The symmetry that pro-
tects quantum information can exist naturally in the
interaction of the quantum information processing sys-
tem with its environment, as in the case of decoherence-
free subspaces and noiseless subsystems, the symmetry
can be induced by adding additional dynamics as in the
case of bang-bang decoupling, or the symmetry can exist
implicitly as in quantum error correcting codes. The role
of explicit, dynamical, and implicit symmetries in stabi-
lizing quantum states and preserving quantum coherence,
of course, goes far beyond quantum information process-
ing: preservation of coherence via symmetry plays a role
in virtually all quantum systems. One apparent exception
to this rule is the case of topological quantum systems, in
which topological degrees of freedom are intrinsically
resilient to local errors. Although topological quantum
computation is related to toric error correcting codes [8],
the physical mechanism by which it preserves quantum
information goes beyond toric codes. It is an interesting
question, then, whether topological quantum computa-
tion, in particular, and topological quantum systems, in
general, can be treated in a unified framework along with
the above mechanisms. This Letter shows that the answer
to this question is ‘“yes.”
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First, review briefly the way in which symmetry pro-
tects quantum information [4,7]. Suppose that one has a
quantum system S with Hilbert space H = C, interact-
ing with an environment. The effect of the environment
on the system is given by a set of error operators {E,}:
each E, represents some bad thing that can happen to the
quantum system. Sums of arbitrary products of error
operators together with their Hermitian conjugates gen-
erate the error algebra A. This error algebra is the
fundamental object in the algebraic approach to protect-
ing quantum information: it contains all the information
about the quantum information-stabilizing strategies. Let
A’ ={X:X, E,] = 0} be the commutant of the error
algebra. The elements of the unitary part U(A') of A’
are symmetries for the error algebra A.

The degrees of freedom associated with observables in
A’ are noiseless ones [4,7]: they are by definition de-
coupled from the noise processes enacted by the elements
of A. These noiseless observables give rise to
decoherence-free subspaces and noiseless subsystems as
follows. It is a basic theorem of representations of alge-
bras that the Hilbert space /{ then decomposes as fol-
lows:

H =o0,C"eCY, (1

where the J label the different irreducible representations
of the algebras A and A’, d; is the dimension of the Jth
irreducible representation of A, and n; is the dimension
of the Jth irreducible representation of A’. [Formally,
this decomposition of the Hilbert space into sums of
tensor product spaces corresponds to the so-called central
decomposition [9]: A = &,c;1, ® M(d,, C), where M
is the set of d; X d; matrices over C.] The tensor product
structure arises naturally because members of A and A’
commute: in each term in the sum, the error operators in
A act on the subsystem C% while leaving the noiseless
subsystem C" unchanged. The decomposition (1) shows
that nontrivial noiseless subsystems exist only when A
has a noncommutative symmetry group G = U(A’'). In
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the particular case in which d; = 1, one has an instance
of a noiseless code or decoherence-free subspace [3].
Bang-bang decoupling is a method for inducing an effec-
tive symmetry in the error dynamics that gives rise to
effective noiseless subsystems. Finally, in [4], it was
shown that this tensor product decomposition is at the
root of quantum error correcting codes: errors act on the
subsystem C% while the quantum information lying in
the encoded subsystem C™ remains unchanged. So vir-
tually all known methods for protecting quantum infor-
mation fall within the error-algebra formalism.

This formalism is also at the root of performing quan-
tum information processing in a fault-tolerant fashion.
Quantum manipulations within a noiseless subsystem can
be performed by applying transformations from A’. This
last technique allows one to perform universal quantum
computation using quantum logic gates (such as swap
gates) that are not universal on the entire Hilbert space,
a phenomenon known as encoded universality [10].

For what follows it is important to notice that the state-
space structure (1) is reminiscent of superselection [11].
In superselection theory the algebra A is viewed as the
one generated by the whole set of physical observables
rather than the one associated with a set of distinguished
interactions (the error operators). In this context U(A')
is called the gauge group. The operators of A are not able
to change the quantum numbers associated with the
gauge transformations and the state space accordingly
splits in a direct sum of nonconnected sectors. Accord-
ingly, the elements of the gauge group are operators that
commute with all the physical quantities, and their ei-
genvalues therefore cannot be changed by any physical
operation. It is well known that such a situation can occur
only in the cases in which A describes an infinite set of
degrees of freedom, the paradigmatic case being provided
by field theory [12]. The different sectors describe now
different inequivalent phases in which the system can
exist; a major illustration of this state of affairs is pro-
vided by the phenomenon of spontaneous symmetry
breaking.

Another very important occurrence of superselection
is given by the quantization of systems whose classical
configuration manifold M has nontrivial topology, e.g.,
with fundamental group 7 (M) # Id [13]. In this case
the superselection sectors correspond to inequivalent
quantizations labeled by irreducible representations of
m (M) [14]. When M is the manifold associated with
N indistinguishable particles living in d dimensions, the
different irreducible representations describe different
quantum statistics [15]. For d = 3, m(M) is given by
the permutation group Sy, while for d = 2 the funda-
mental group is the braid group By. Particles associated
with one-dimensional irreducible representations of By
are called Abelian anyons, and particles associated with
higher dimensional representations are called non-
Abelian anyons. This latter class of systems is exactly
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the one that has been argued to be useful for quantum
computation [6]. Now we apply the error-algebra frame-
work to topological information protection.

The prototype system in which we are interested is a
lattice A having attached to each of its sites (or edges) a
finite-dimensional quantum system, e.g., a qubit, with
state space F ;. The lattice A is supposed to be embed-
dable in a two-dimensional surface M with genus g. For
example, the lattice could be a square lattice with peri-
odic boundary conditions, embedded in a torus. The
interaction among the local quantum systems is described
by a local Hamiltonian H, having a D(g)-dimensional
degenerate ground state C C H ) = ®;c,H ;, where D
is an exponential function of its argument. C is the code
subspace. The key idea is that H, is designed in such a
way that the ground-state degeneracy has a topological
origin. This means that orthogonal elements of C have to
correspond to different eigenvalues of global observables.

For some of the systems studied in [6,16] a complete set
of commuting global observables in C can be constructed
as follows. Let {7}?§1 denote the set of noncontractible
loops generating the homology group H,(M) of M [13].
One can consider the operators X,, = [[;c, x; where the
x; € End(H ;) are suitable site operators, e.g., o%. For the
sake of simplicity assume that the X,’s are Hermitian
self-inverse operators, i.e., X% = 1. If this is the case, C
can be decomposed in terms of the 2°¢ joint eigenvectors
of the X, ie, C=span{|lJ)=|j,,..., o)} where
X, 1) = jil ) (i € Z, ={-1, 1}).

We denote by A, the Abelian algebra generated by
the X, . Local operators X € A, = Ay, cannot by
definition modify the global properties described by the
X,,.’s. Local operators therefore (a) cannot induce tunnel-
ing between orthogonal ground states, and (b) cannot
distinguish elements in the code subspace C. It follows
that V X € Ay, one has (J'| X |J) = 8, yc(X), where c :
Ao — C. If I is the projector over the ground state
C, a compact way to express the condition above is given
by

HCXHC = C(X)Hc, VXe ﬂlov (2)

This latter relation amounts to saying that C behaves as
an error correcting code with respect to the class of errors
represented by local operators [2].

The vector space generated by the action of local
operators over C comprises the whole of F{ . Relations
(2) above imply that the subspaces A,.|J) for different
J’s are orthogonal and isomorphic. It follows that one has
the following splitting according to the irreducible rep-
resentations of A gqp:

Hy=o, ,.2A.l))=CaoC, 3)

JEZ?

where C’ is a 2!ndim#1=2s_dimensional factor associated
with local degrees of freedom. This factor is associated
with the syndrome measurements for quantum error
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correction, and its local nature implies that those
measurements can be performed with elements belonging
to ﬂlOC‘

By comparing Eq. (3) with Eq. (1) it is not difficult to
realize that the following holds.

Proposition.—The topologically protected sector C of
JH ), can be identified with a noiseless subsystem with
respect to the error algebra generated by local interac-
tions. The associated gauge group is generated by opera-
tors with nontrivial topological content.

It is quite important to make clear that all these proper-
ties are meant to hold in the limit in which the size |A]
goes to infinity; for finite size systems they are fulfilled
only in an approximate way, though with exponential
accuracy [6]. Formally Eq. (2) has then the meaning

ITeXTIe — e(X)Tcll = O(e™ ™), 4)

where @ > 0 and 7 is an integer. It is just when |A]| — oo
the A ,.|J) become truly disjointed sectors. In this limit
one has an effective state-space splitting having a topo-
logical origin also known as homotopical superselection
rule [14]. In the finite |A| case there is always a (small)
chance of a local perturbation inducing tunneling be-
tween different |J)’s and of having different diagonal
elements in C.

The result stated in the proposition above—in view of
the general connections between error correcting codes
and noiseless subsystems already established in [4,7] —is
not conceptually totally surprising. On the other hand, it
represents a novel and natural physics-based instance of
those connections. Moreover, in this way we are also
pointing out that, after tracing over the local degrees of
freedom, i.e., C’, one need not perform any active recov-
ery from the error: a completely passive stabilization is
achieved.

A very interesting situation is when our system is
gapped; this means that there is a finite energy A between
the ground and first excited states that remains finite even
in the large size limit. In this case, every local modifica-
tion of the ground state results in a finite increase of
energy: the system is incompressible. Prototypes of this
kind of systems are provided by fractional quantum Hall
effect fluids and spin liquids [17].

In this case small perturbations X € A, are ineffec-
tive in inducing tunneling between the ground and the
excited states (not just among ground states). Indeed,
from elementary perturbation theory one has that the
amplitude for those tunneling processes scale as k/A <
1, where £ is the typical strength of the matrix element of
X between ground and excited states. Reasoning again in
perturbation-theoretic fashion, it is clear that this relation
along with Eq. (2) implies that ground-state degeneracy is
robust against small and local perturbations. This is a
signature of its topological nature. It has been recently
argued that this kind of stability result might be generic

067902-3

for quantum spin systems in lattices with short range
interactions [18]. Moreover, some (exotic) spin models
whose ground states are robust for all weak enough local
perturbations have been explicitly constructed [19].

Quantum information manipulation—The primary
purpose of this Letter is to identify in detail the connec-
tion between topological protection of quantum informa-
tion and the error-algebra formalism of protecting
quantum information via noiseless subsystems, quantum
error correcting codes, etc. Now that that task has been
performed, we use the general formalism developed
above to address the important problem of the manipula-
tion of topologically encoded quantum information. The
actual way in which universal topological quantum com-
putation is performed depends strongly on the underlying
physical models [6,16]: the error-algebra formalism al-
lows us to abstract certain common features of these
models.

Within the described error-algebra framework, it is
possible to describe how to perform quantum computa-
tion within the code subspace by creating local excita-
tions and by moving them around the lattice. The key
point here is that in the topological models we are exam-
ining the Hamiltonian spectrum comprising (non-
Abelian) localized anyonic excitations [6]. By spatially
exchanging those excitations one can enact operations
that are able to induce coupling between different topo-
logical sectors. Moreover, these operations will depend
just on some global, ie., topological, feature of the
exchange and therefore are stable against any local
perturbation.

Acting on C with N-site operators, Xj?‘;" creates an
excited state with N local excitations (the a’s label the
different possible “colors’). These excited states are de-
generate as long as the j’s are kept far apart [6]. One can
then build a degenerate subspace endowed with a bipartite
(local and global) tensor product structure HY :=
span{[ )=, X" C /1 # k= j; # ji} = C,, ® C. The ba-
sis states in ) (a) are labeled by the locations
Ji» - -+, jy of the N local excitations, e.g., anyon-antianyon
pairs. In order to perform quantum manipulations, one
resorts to the anyonic nature of these excited states.
Excitations can be moved about the lattice, either by
applying local dynamical swap operations [20] or by
dragging them adiabatically, e.g., using an external po-
tential [21], along some path with nontrivial braiding
pattern b. Moving one excitation around another enacts
an element of the braid group By, which in turn performs
a quantum logic operation on the quantum information
registered in the code subspace. Finally, the excitations
are annihilated (fusion): the result of the computation is
registered in the local state of the system after fusion has
taken place.

We denote by p the particular high-dimensional rep-
resentation of the Braid group model involved in the given
topological model. The sequence of excitation, braiding,
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and fusion can be schematically summarized by the
following map chain:

f
Il gy 5yl )

it is important to note here that only the intermediate
braiding step p(7y) has a nontrivial topological content,
and can therefore change the global quantum numbers.

The braid elements p(7y) are expressible as an holon-
omy of a suitable statistical connection [15]; from this
perspective the computational scheme sketched above
provides a particular instance of the so-called holonomic
approach to quantum computation [22]. In this kind of
scheme, information is encoded in a degenerate eigen-
space of a parametric family of (isodegenerate) Hamil-
tonians and manipulated by driving the parameters along
suitable adiabatic paths. This enacts a transformation of
the encoding space into itself via the holonomy associated
with the Wilczek-Zee non-Abelian connection, i.e., gauge
potential, generated by the Hamiltonian family [23]. In
the topological case under examination the manifold of
control parameters is given by the set of the coordinates
of the anyonic excitations themselves. When the statisti-
cal connection has an holonomy group coinciding with a
whole set of unitary transformations over C, the full
computational power is achieved [22]. In this case uni-
versal fault-tolerant manipulations can be performed on
the coding ground state C. (Such computation is an
example of encoded universality.) The common holo-
nomic nature of geometric and topological quantum com-
putation suggests that conceptually there is a sort of
continuous path from purely geometric to purely topo-
logical quantum information processing schemes. In or-
der to optimize the fault-tolerance features one might
think of designing non-Abelian Wilczek-Zee connec-
tions with maximal topological content.

Conclusions.—In this paper we discussed the relation
between the topological approach to fault-tolerant quan-
tum information processing and the quantum error
correction-avoidance strategies. A unified view of this
latter class of by-now standard techniques is provided
by the algebraic notion of a noiseless subsystem. We
showed that this notion is powerful enough to encompass
even the former class: topologically protected quantum
codes are an instance of noiseless subsystem. The crucial
point consists in the separation of local and global de-
grees of freedom by means of the associated observable
algebras. Moreover, we pointed out how information
processing within this kind of noiseless subsystems is
then achieved through the holonomic manipulations of
(non-Abelian) anyonic excitations.
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