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Inelastic X-Ray Scattering in Correlated Mott Insulators
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We calculate the inelastic light scattering from x rays, which allows the photon to transfer both
energy and momentum to the strongly correlated charge excitations. We find that the charge-transfer
peak and the low-energy peak both broaden and disperse through the Brillouin zone similar to what is
seen in experiments in materials such as Ca2CuO2Cl2.
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FIG. 1. Experimental data for Ca2CuO2Cl2 [3] with momen-
tum transfers along the BZ diagonal (a) and BZ edge (b),
respectively. The values of the parameter X � �cos�qxa� �
cos�qya��=2 indicate the values of the momentum transfer
�qx; qy�. Note that for panel (b) the momentum transfer runs
electron correlations which crucially affect properties of from �0; 0� to �
; 0� only, X � 1 to 0.
The dynamics of electrons in strongly correlated sys-
tems is far from well understood. In a Mott insulator,
correlations split a single band into a lower and an upper
Hubbard band separated by a Mott gap. Many experimen-
tal probes have focused attention on exploring the de-
tailed nature of the lower Hubbard band from which
electrons may be excited using angle-resolved photoemis-
sion, for example, but the structure and symmetry of the
upper Hubbard band and the relaxational dynamics of
electrons populated into it remains largely unexplored.

Inelastic x-ray scattering [1] has attempted to address
this issue on a number of correlated insulators such as
La2CuO4 and Sr2CuO2Cl2 [2], Ca2CuO2Cl2 [3], NaV2O5

[4], Nd2CuO4 [5], and 1D insulators Sr2CuO2Cl2 and
Sr2CuO2 [6]. The measured signal is resonantly enhanced
by tuning the incident photon energy to lie near the Cu K
or V L3 edge. The measurements have revealed remark-
ably similar characteristics as a function of photon energy
loss: (i) the presence of a large, sharp, and relatively dis-
persionless peak centered around a few eVs, and (ii) the
development of a low-energy peak dispersive towards
higher frequencies for photon momentum transfers from
the Brillouin zone (BZ) center along either the BZ edge
or diagonal. Data taken on Ca2CuO2Cl2 [3] are shown in
Fig. 1. The high-energy peak has been associated with
photon-induced charge transfer between orbitals of dif-
ferent atoms [4] or different orbitals of the same atom
[3,6], while the low-frequency peak has been associated
with a transition from the lower to upper Hubbard band
across an effective Mott gap [3,4,6] and a q dependence of
the Mott gap has been inferred [2]. However, it does not
seem obvious why an excitation across a Mott gap would
show dispersion given that the physics of the Mott tran-
sition is local in character.

Theoretical calculations on inelastic x-ray scattering
have been limited to energy-band model calculations and
exact diagonalization studies of small clusters [1]. While
energy-band calculations might be appropriate for
ground-state properties of weakly correlated systems
they do not adequately address the role of intra-atomic
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the charge excitation spectra of strongly correlated sys-
tems. Exact diagonalization studies of small clusters [3,7]
largely focus on the energy separation between the states
excitable by the x rays (such as excitons), and suffer the
limitation that the line shape of the calculated spectra
depend sensitively on cluster size due to finite size effects
on the electron dynamics. Thus we need to formulate a
theory for inelastic x-ray scattering which does not suffer
from size effects and is able to account for atomic elec-
tron correlations.

Two important features of the experimental data have
yet to be clarified. First, the selection rules coming from
the different orientations of the polarization directions of
the incoming and outgoing photons as well as the direc-
tion of their scattered momenta have not been used to
determine the symmetry of the upper Hubbard band, for
example. These selection rules have led to intense inves-
tigation of the dynamics of electrons in the high-
temperature superconductors to determine information
about charge dynamics on regions of the BZ or the
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FIG. 2. Coupled Dyson equations for the inelastic x-ray scat-
tering correlation functions described by the scattering ampli-
tude �a. Panel (a) depicts the equation for the interacting
correlation function, while panel (b) is the supplemental equa-
tion needed to solve for the correlation function. The symbol �
stands for the local dynamical irreducible charge vertex given
in Eq. (5). In situations where there are no charge vertex
corrections, the correlation function is simply given by the
bare-bubble diagram in (a).
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symmetry of the order parameter in the superconduct-
ing state [8]. Second, the mechanisms of electronic re-
laxation revealed by inelastic x-ray scattering have yet to
be explored. More precisely, besides the magnitude of the
matrix elements coupling the conduction band to the
excited states via the photon vector potential, the way
in which the x-ray induced charge imbalance relaxes, has
remained largely unexplored. Inelastic x-ray scattering
provides a window to investigate the symmetry and path-
way of charge dynamics in strongly correlated systems.

We choose to focus attention on nonresonant x-ray
scattering, or scattering in which the frequency depen-
dence of the incoming or outgoing photons can be indi-
vidually neglected and only the frequency shift � �
!i � !s enters, where !i;s denotes incident, scattered
x-ray energies, respectively. This means that we have
lost the ability to make quantitative predictions concern-
ing the overall intensity of the scattering and we cannot
calculate line-shape changes induced by varying the in-
cident photon frequency. However, our goal is to evaluate
inelastic x-ray scattering in a model in which the corre-
lations can be handled exactly — the Falicov-Kimball
model in infinite dimensions — to determine which fea-
tures emerge from the strong correlations. We note that
our prior exact results for Raman scattering in both the
Falicov-Kimball [9] and the more realistic Hubbard
model [10] yield the same qualitative behavior in the
insulating phases, so we expect inelastic x-ray scattering
to also be model independent.

The Falicov-Kimball model, which has been used to
describe a variety of phenomena in binary alloys [11],
contains itinerant band electrons and localized elec-
trons, in which the band electrons can hop with ampli-
tude t�=2

���
d

p
between nearest neighbors and interact

via a screened Coulomb interaction U with the localized
electrons:
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where cyi ;ci is the spinless conduction electron creation
(annihilation) operator at site i and wi �0 or 1 is a
classical variable of the localized electron number at
site i. EF and � control the filling of the localized and
conduction electrons, respectively.

In this single-band model with energy ��k�, the inelas-
tic x-ray response is given formally by a density-density
correlation function S�q; !� � � 1


 �1 � n�!���00�q; !�
with

��q; !� � h�~���q�; ~����q��i�!� (2)

formed with an ‘‘effective’’ density operator given by

~���q� �
X
k;�

�a�k�c
y
��k� q=2�c��k�q=2�: (3)

The strength of the scattering �a is determined by the
curvature of the band as
067402-2
�a�k� �
X
!;"

es
!

@2��k�
@k!@k"

ei
": (4)

Here ei;s denote the incident, scattered x-ray polarization
vectors, respectively, and we have chosen units kB �c�
�h�1 and have set the hypercubic lattice constant equal
to 1. We can classify the scattering amplitudes by point
group symmetry operations. If we choose ei ��1;1;1; :::�
and es ��1;�1;1;�1; :::�, then we have the B1g sector,
while ei �es ��1;1;1; :::� projects out the A1g sector since
the B2g component is identically zero in our model due to
the inclusion of only nearest-neighbor hopping. We thus
can cast the scattering amplitudes into a simple form:
�A1g

�k�����k� and �B1g
�k�� t�

P
1
j�1 coskj��1�j=

���
d

p
.

The Dyson equation for the density-density correlation
function appears in Fig. 2. Note that there are two coupled
equations illustrated in Figs. 2(a) and 2(b); these equa-
tions differ by the number of �a factors in them. The
irreducible vertex function � is the dynamical charge
vertex [12] which takes the form

��i!m; i!n; i+l�0� � -mn
1

T
�m � �m�l

Gm � Gm�l
; (5)

on the imaginary axis [i!m � i
T�2m � 1� is the Fer-
mionic Matsubara frequency and i+l � 2i
Tl is the
Bosonic Matsubara frequency]. Here �m � ��i!m� is
the local self-energy on the imaginary axis and Gm �
G�i!m� is the local Green’s function on the imaginary
axis. If the scattering amplitude � does not have a pro-
jection onto the full symmetry of the lattice, then there
are no vertex corrections from the local dynamical charge
vertex [13].

A straightforward calculation shows that the B1g re-
sponse has no vertex corrections on the zone-diagonal
067402-2
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q � �q; q; q; q; . . .�. Hence, the B1g response is the bare bubble:
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Here we have used the following notation: f�!� � 1=
�1 � exp�!�� is the Fermi-Dirac distribution, ���� �
exp���2�=

����



p
is the noninteracting density of states;

��!� is the local self-energy on the real axis; X �
limd!1

P
i cosqi=d; and F1�z� �

R
d�����=�z � �� is

the Hilbert transform of the noninteracting density of
states. Techniques for finding the self-energy [14] have
appeared elsewhere.

The A1g response everywhere and the B1g response off
of the zone diagonal, do have vertex corrections. The
calculation of each response function is straightforward,
but tedious. One needs to first solve the coupled equations
depicted in Fig. 2 on the imaginary axis and then perform
the analytic continuation as in the Raman scattering case
[9]. The end result is cumbersome and will be presented
elsewhere.

The results for a correlated insulator U � 4t� at differ-
ent temperatures are shown in Figs. 3 and 4 for B1g and
A1g inelastic x-ray scattering, respectively, as a function
of transferred energy for different momentum transfers
throughout the BZ measured by the factor X. Panel (a) for
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FIG. 3. Inelastic x-ray scattering response in the B1g channel
along (a) the Brillouin zone diagonal and (b) along the zone
edge for the half-filled Falicov-Kimball model on a hypercubic
lattice. The solid, dotted, short-dashed, and long-dashed curves
correspond to temperatures T � 0:1; 0.25 (partially obscured
by the 0.1 line), 0.5, 1.0, respectively.
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Figs. 3 and 4 refers to scattering along the zone-diagonal
X � cosq for the zone-diagonal wave vector q �
�q; q; q; . . . ; q�, and panel (b) refers to scattering along
the zone edge [here we have q � �q; 0; q; 0; . . . ; q; 0� for
1 � X � �1 � cosq�=2 � 0 and q � �
; q; 
; q; . . . ; 
; q�
for 0 � X � ��1 � cosq�=2 � �1. The curves have
been shifted vertically for clarity. The lowest set of
curves X � 1 corresponds to Raman scattering with op-
tical photons [9]. The main qualitative feature in both
figures is the presence of a small, dispersive low-energy
peak for frequencies �t� and a large, dispersionless
charge-transfer peak �U. While the charge-transfer
peak remains relatively robust with increasing tempera-
ture, the low-energy peak gains intensity from zero as
temperature is increased. In particular, all momenta show
the development of low-energy spectral weight as T in-
creases and there is a nondispersive isosbestic point —a
frequency at which the spectra are temperature indepen-
dent —around + � U=2. The high-energy peak reflects
the energy scale for excitations across the Mott gap and is
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FIG. 4. Inelastic x-ray scattering response in the A1g channel
along (a) the Brillouin zone diagonal and (b) along the zone
edge for the half-filled Falicov-Kimball model on a hypercubic
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by the 0.1 line), 0.5, 1.0, respectively.
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relatively dispersionless due to the local nature of the
correlations. In contrast, the low-energy feature is a con-
sequence of thermally generated double occupancies
which open a low-energy band (up to energies �t�) able
to scatter x rays. For decreasing temperature, the low-
energy intensity disappears and only scattering across the
Mott gap remains.

The charge-transfer peak is sharp near the BZ center
(X � 1), but broadens for momentum transfers approach-
ing the BZ corner X � �1, more so for the B1g channel
than for A1g. In fact, the A1g and B1g responses are
identical at the �
; 
; . . . ; 
� point X � �1 due to the
local approximation. Any variation in the signal at the
zone corner in different symmetry channels is due to
nonlocal many-body correlations.

An important difference is that the A1g results have no
low-energy spectral weight for q � 0, corresponding to
inelastic Raman scattering [9]. The vertex corrections
remove all remnants of the low-energy response here,
but it enters for any finite value of q. For an unpolarized
(partially polarized) measurement, the x-ray response is
a (weighted) superposition of the B1g and A1g spectra.

We plot the behavior of the peak position and peak
width (full-width at half maximum) for both the low-
energy peak and the charge-transfer peak for both chan-
nels in Fig. 5. One can see that the low-energy peak has
a width larger than its energy for both channels and for
the A1g channel follows the behavior of the corresponding
B1g feature away from the zone center. The charge-
transfer peak is well defined for both channels. The
only dispersive feature of the charge-transfer peak is
the width of the B1g peak.

Referring back to the experimental data shown in
Fig. 1, it is tempting to associate the relatively dispersion-
less high-energy peak with an excitation across a charge-
transfer gap and the broad low-energy peak with the
dispersive feature generated from double occupancies.
However, the experimental data are not yet complete as
the polarization and temperature dependence have not
been measured. Our theory predicts that the low-energy
feature decreases in intensity as temperature is lowered.
Moreover, a polarization-dependent measurement could
perhaps deconvolve the high-energy peak into two sepa-
rate peaks of A1g and B1g symmetry, and would also be
able to separate different behavior of the low-energy peak
near the zone center. Thus we believe it is interesting to
examine inelastic x-ray scattering at different tempera-
tures and with polarizers for the incident and scattered
light. We believe that a number of new and interesting
features of charge excitations in correlated systems are
likely to emerge if this can be accomplished.

In summary, we have constructed a formally exact
theory for nonresonant x-ray scattering in correlated
insulators to determine the pathways for electron relaxa-
tion in strongly correlated systems. We find that a high-
energy charge-transfer peak and a low-energy peak both
broaden and disperse through the Brillouin zone similar
067402-4
to what is seen in experiments in Ca2CuO2Cl2. In general,
the temperature and polarization dependence of the spec-
trum would assist in an interpretation of observed peaks
in the x-ray spectrum of correlated insulators.
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